https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=36213062&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=nerve+root&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a9a57ad91ef34086a61&query_key=1&retmode=xml&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 Electrophysiological, biomechanical, and finite element analysis study of sacral nerve injury caused by sacral fracture. | LitMetric

We aimed to study the mechanism of sacral nerve injury caused by sacral fractures and the relationship between nerve decompression and nerve function. First, we observed the anatomical features of lumbosacral nerve root region in Sprague-Dawley rats. Next, the rats were divided into the sham, 10 g, 30 g, and 60 g groups for electrophysiological studies on nerve root constriction injury. Then we studied the biomechanical properties of rat nerve roots, lumbosacral trunk, and sacrum. Finally, we established a finite element analysis model of sacral nerve roots injury in rats and determined the correlation between sacral deformation and the degree of sacral nerve roots injury. Anatomical study showed L5 constitutes sciatic nerve, the length of the L5 nerve root is 3.67 ± 0.15 mm, which is suitable for electrophysiological research on nerve root compression injury. After a series of electrophysiological study of L5 nerve roots, our results showed that nerve root function was almost unaffected at a low degree of compression (10 g). Nerve root function loss began at 30 g compression, and was severe at 60 g compression. The degree of neurological loss was therefore positively correlated with the degree of compression. Combining biomechanical testing of the lumbosacral nerve roots, finite element analysis and neuroelectrophysiological research, we concluded when the sacral foramina deformation is >22.94%, the sacral nerves lose function. When the compression exceeds 33.16%, early recovery of nerve function is difficult even after decompression. In this study, we found that the neurological loss was positively correlated with the degree of compression. After early decompression, nerve root function recovery is possible after moderate compression; however, in severe compression group, the nerve function would not recover. Furthermore, FEA was used to simulate nerve compression during sacral fracture, as well as calculate force loading on nerve with different deformation rates. The relationship between sacral fractures and neurological loss can be analyzed in combination with neurophysiological test results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532616PMC
http://dx.doi.org/10.3389/fbioe.2022.920991DOI Listing

Publication Analysis

Top Keywords

nerve root
28
nerve
21
nerve roots
20
sacral nerve
16
finite element
12
element analysis
12
nerve function
12
root function
12
degree compression
12
neurological loss
12

Similar Publications

: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.

View Article and Find Full Text PDF

Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.

Bioengineering (Basel)

January 2025

School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.

Background: A brachial plexus avulsion occurs when the nerve root separates from the spinal cord during birthing trauma, such as shoulder dystocia or a difficult vaginal delivery. A complete paralysis of the affected levels occurs post-brachial plexus avulsion. Despite being reported in 10-20% of brachial plexus birthing injuries, it remains poorly diagnosed during the acute stages of injury, leading to poor intervention approaches.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

CT scan-based morphometric comparison of human and canine lumbar spine generates instrumental data for intervertebral disc percutaneous surgery.

Osteoarthr Cartil Open

March 2025

Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes, F-44000, France.

Objective: This study aimed to describe the anatomical landmarks for intervertebral disc (IVD) percutaneous approaches (transpedicular TPA and transannular TAA) using CT scans in humans and dogs for regenerative medicine research.

Method: CT scans of 57 human (30 supine, 27 prone) and 49 canine (29 chondrodystrophic, 20 non-chondrodystrophic) lumbar spines were analyzed. Morphometric data, cutaneous landmarks, and approach angles were measured, with additional sections assessing nerve root distances from TPA routes.

View Article and Find Full Text PDF

Fundamentals of intervertebral disc degeneration and related discogenic pain.

World J Orthop

January 2025

Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.

Lumbar intervertebral disc degeneration is thought to be the main cause of low back pain, although the mechanisms by which it occurs and leads to pain remain unclear. In healthy adult discs, vessels and nerves are present only in the outer layer of the annulus fibrosus and in the bony endplate. Animal models, and histological and biomechanical studies have shown that annulus tear or endplate injury is the initiating factor for painful disc degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!