Distribution pattern of endophytic bacteria and fungi in tea plants.

Front Microbiol

Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China.

Published: September 2022

Endophytes are critical for plant growth and health. Tea is an economically important crop in China. However, little is known about the distribution pattern and potential functions of endophytic communities in tea trees. In this study, two genotypes (BXZ and MF) cultivated under the same conditions were selected, and endophytic bacteria and fungi were analyzed through 16S rRNA and ITS high-throughput sequencing technologies, respectively. For endophytic bacteria, root tissues harbored the most diverse endophytes, followed by stems and old leaves, and new leaves possessed the lowest diversity. In contrast, old leave tissues harbored more diverse endophytic fungi than did root and stem tissues. Most of the dominant endophytes showed obvious cultivar and tissue preferences. Tissue type played a more important role in shaping community structure than did cultivar. Nevertheless, some endophytic bacterial groups, which mainly affiliated to and , could parasitize different tissues, and the average relative abundance of endophytic bacteria was as high as 72.57%. Some endophytic fungal populations, such as could also parasitize tea, and the relative abundance accounted for approximately 25.70-97.26%. The cooperative relationship between endophytic bacteria and fungi in the new leaves was stronger than that in the old leaves, which can better participate in the metabolism of tea material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538792PMC
http://dx.doi.org/10.3389/fmicb.2022.872034DOI Listing

Publication Analysis

Top Keywords

endophytic bacteria
20
bacteria fungi
12
endophytic
9
distribution pattern
8
tissues harbored
8
harbored diverse
8
relative abundance
8
bacteria
5
tea
5
pattern endophytic
4

Similar Publications

Plant-associated microbiome plays important role in maintaining overall health of the host plant. Xanthium strumarium displaying resilience to various environmental fluctuations may harbor some bacterial isolates which can help this plant to grow worldwide. The present study aims to isolate endophytic and rhizospheric bacteria from X.

View Article and Find Full Text PDF

Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.

View Article and Find Full Text PDF

Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.

View Article and Find Full Text PDF

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.

Mycorrhiza

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!