The hydrogen-based hollow fiber membrane biofilm reactor (H2-based MBfR) has shown to be a promising technology for nitrate (NO -N) reduction. Hollow fiber membranes (HFM) operating in a closed mode in an H-based MBfR often suffer from reverse gas diffusion, taking up space for the effective gas substrate and resulting in a reduction in the HFM diffusion efficiency, which in turn affects denitrification performance. In this work, we developed a laboratory-scale H-based MBfR, which operated in a closed mode to investigate the dynamics of denitrification performance and biofilm microbial community analysis at different H supply pressures. A faster formation of biofilm on the HFM and a shorter start-up period were found for a higher H supply pressure. An increase in the H pressure under 0.08 MPa could significantly promote denitrification, while a minor increase in denitrification was observed once the H pressure was over 0.08 MPa. Sequencing analysis of the biofilm concluded that (i) the dominant phylum-level bacteria in the reactor during the regulated hydrogen pressure phase were and ; (ii) when the hydrogen pressure was 0.04-0.06 MPa, the dominant bacteria in the MBfR were mainly enriched on the hollow fiber membrane near the upper location (Gas inlet). With a gradual increase in the hydrogen pressure, the enrichment area of the dominant bacteria in MBfR gradually changed from the upper location to the distal end of the inlet. When the hydrogen pressure was 0.10 MPa, the dominant bacteria were mainly enriched on the hollow fiber membrane in the down location of the MBfR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542790 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.1023402 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.
View Article and Find Full Text PDFFoods
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Currently, high-salt diets have become one of the world's biggest dietary crisis and long-term high-salt diets are seriously detrimental to human health. In response to this situation, the present study proposed a saltiness enhancement strategy using alginate, which is a dietary fibre from brown algae and has many health benefits, such as regulating intestinal microbiota, anti-hypertension and anti-obesity. The comparison of alginates with different viscosities showed that alginate of 1000-1500 cps at a concentration of 1.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China.
The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 27343 Buštěhrad, Czech Republic.
This paper introduces cross-wound CFRP shear reinforcement of hollow HPC beams. The CFRP reinforcement was manufactured in the form of a square tubular mesh from carbon rovings oriented at ±45° from the longitudinal axis. The shear reinforcement was made in two variants from carbon yarns with linear densities of 1600 and 3700 tex.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University Named After H.M. Berbekov, 360004 Nalchik, Russia.
The influence of the molecular weight and chemical structure of polyphenylene sulfone (PPSU) end groups on the formation of the porous structure of ultrafiltration (UF) hollow fiber membranes was investigated. Polymers with a molecular weight ranging from 67 to 81 kg/mol and with a hydroxyl-to-chlorine end group ratio ranging from 0.43 to 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!