Novel coronavirus is a disease that can propagate easily with very minute carelessness and with very little physical contact between people. Presently, the world's central health institution called the World Health Organization has approved and advised the Reverse Transcription-Polymerase Chain Reaction (RT-PCR) swab test as the most important and effective diagnostic method to confirm if a patient has COVID-19 symptoms or not. This test takes at least a day for revealing the results, depending on the feasible resources in the neighborhood. Moreover, the RT-PCR test gives sometimes false positive results and slow in the process. To keep the potential virus carriers and potential causes of the disease quarantined as early as possible, there is still a requirement for a much faster and more accurate diagnostic process to supplement RT-PCR test of finding the patients affected by the virus. In this regard, radiological images such as X-ray and CT (Computerized Tomography) scan are found to be useful. The X-ray and CT scan have good screening modality; they are quick at capturing and finding and widely available around the world. Therefore, a deep learning model, which makes use of CT scan and X-ray images, has been proposed to automate and analyze the diagnostic process by utilizing Convolutional Neural Network (CNN). This model makes use of InceptionV3 deep learning model, a type of CNN. It is a lightweight deep learning model that is apt for mobile, laptop, and tablet platforms. The proposed model requires low memory space and gives an accuracy of about 96%, sensitivity of 93.48% for CXRs (Chest X-rays) and accuracy of 93%, sensitivity of 89.81 % for the CT scan images respectively. The proposed model is also compared with other deep learning models like VGG 16 (Visual Geometry Group), ResNet50V2 (Residual Network) and other existing deep learning models and it is found to be better in terms of accuracy and other performance parameters. Further, a web application has been developed from the proposed model. The web application is able to detect COVID-19 cases from the CT scan and X-ray images with significant accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532815 | PMC |
http://dx.doi.org/10.1007/s13721-022-00382-2 | DOI Listing |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Geroscience
January 2025
Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.
Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.
J Imaging Inform Med
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.
The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.
This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!