Cardiovascular diseases (CVDs) are the leading cause of death in the world. Endothelial progenitor cells (EPCs) are currently being explored in the context of CVD risk. EPCs are bone marrow derived progenitor cells involved in postnatal endothelial repair and neovascularization. A large body of evidence from clinical, animal, and studies have shown that EPC numbers in circulation and their functionality reflect endogenous vascular regenerative capacity. Traditionally vitamin D is known to be beneficial for bone health and calcium metabolism and in the last two decades, its role in influencing CVD and cancer risk has generated significant interest. Observational studies have shown that low vitamin D levels are associated with an adverse cardiovascular risk profile. Still, Mendelian randomization studies and randomized control trials (RCTs) have not shown significant effects of vitamin D on cardiovascular events. The criticism regarding the RCTs on vitamin D and CVD is that they were not designed to investigate cardiovascular outcomes in vitamin D-deficient individuals. Overall, the association between vitamin D and CVD remains inconclusive. Recent clinical and experimental studies have demonstrated the beneficial role of vitamin D in increasing the circulatory level of EPC as well as their functionality. In this review we present evidence supporting the beneficial role of vitamin D in CVD through its modulation of EPC homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515729 | PMC |
http://dx.doi.org/10.12997/jla.2022.11.3.229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!