Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Next-generation sequencing methods have been developed and proposed to investigate any query in genomics or clinical activity involving DNA. Technical advancement in these sequencing methods has enhanced sequencing volume to several billion nucleotides within a very short time and low cost. During the last few years, the usage of the latest DNA sequencing platforms in a large number of research projects helped to improve the sequencing methods and technologies, thus enabling a wide variety of research/review publications and applications of sequencing technologies.
Objective: The proposed study is aimed at highlighting the most fast and accurate NGS instruments developed by various companies by comparing output per hour, quality of the reads, maximum read length, reads per run, and their applications in various domains. This will help research institutions and biological/clinical laboratories to choose the sequencing instrument best suited to their environment. The end users will have a general overview about the history of the sequencing technologies, latest developments, and improvements made in the sequencing technologies till now.
Results: The proposed study, based on previous studies and manufacturers' descriptions, highlighted that in terms of output per hour, Nanopore PromethION outperformed all sequencers. BGI was on the second position, and Illumina was on the third position.
Conclusion: The proposed study investigated various sequencing instruments and highlighted that, overall, Nanopore PromethION is the fastest sequencing approach. BGI and Nanopore can beat Illumina, which is currently the most popular sequencing company. With respect to quality, Ion Torrent NGS instruments are on the top of the list, Illumina is on the second position, and BGI DNB is on the third position. Secondly, memory- and time-saving algorithms and databases need to be developed to analyze data produced by the 3- and 4-generation sequencing methods. This study will help people to adopt the best suited sequencing platform for their research work, clinical or diagnostic activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537002 | PMC |
http://dx.doi.org/10.1155/2022/3457806 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!