Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As green and sustainable methods to produce hydrogen energy, photocatalytic and electrochemical water splitting have been widely studied. In order to find efficient photocatalysts and electrocatalysts, materials with various composition, size, and surface/interface are investigated. In recent years, constructing suitable nanoscale hetero-interfaces can not only overcome the disadvantages of the single-phase material, but also possibly provide new functionalities. In this review, we systematically introduce the fundamental understanding and experimental progress in nanoscale hetero-interface engineering to design and fabricate photocatalytic and electrocatalytic materials for water splitting. The basic principles of photo-/electro-catalytic water splitting and the fundamentals of nanoscale hetero-interfaces are briefly introduced. The intrinsic behaviors of nanoscale hetero-interfaces on electrocatalysts and photocatalysts are summarized, which are the electronic structure modulation, space charge separation, charge/electron/mass transfer, support effect, defect effect, and synergistic effect. By highlighting the main characteristics of hetero-interfaces, the main roles of hetero-interfaces for electrocatalytic and photocatalytic water splitting are discussed, including excellent electronic structure, efficient charge separation, lower reaction energy barriers, faster charge/electron/mass transfer, more active sites, higher conductivity, and higher stability on hetero-interfaces. Following above analysis, the developments of electrocatalysts and photocatalysts with hetero-structures are systematically reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543084 | PMC |
http://dx.doi.org/10.1080/14686996.2022.2125827 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!