A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3102
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3104

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3104
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

transcriptome analysis of high-salinity stress-induced antioxidant activity and plant phytohormone alterations in . | LitMetric

has a strong salt tolerance and can grow in saline and alkaline coastal and inland habitats. This study investigated the physiological and molecular responses of to high salinity by analyzing the changes in plant phytohormones and antioxidant activity, including their differentially expressed genes (DEGs) under similar high-salinity conditions. High salinity significantly affected proline (Pro) and hydrogen peroxide (HO) in seedlings, increasing Pro and HO contents by 290.56 and 83.36%, respectively, compared to the control. Antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), significantly increased by 83.05, 205.14, and 751.87%, respectively, under high salinity. Meanwhile, abscisic acid (ABA) and gibberellic acid (GA) contents showed the reverse trend of high salt treatment. transcriptome analysis showed that 36,676 unigenes were matched, and 3,622 salt stress-induced DEGs were identified as being associated with the metabolic and biological regulation processes of antioxidant activity and plant phytohormones. POD and SOD were upregulated under high-salinity conditions. In addition, the transcription levels of genes involved in auxin ( and ), ethylene (, , , and ), ABA (), and GA () transport or signaling were altered. This study identified key metabolic and biological processes and putative genes involved in the high salt tolerance of and it is of great significance for identifying new salt-tolerant genes to promote ecological restoration of the coastal strand.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9540214PMC
http://dx.doi.org/10.3389/fpls.2022.995855DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
12
high salinity
12
transcriptome analysis
8
activity plant
8
salt tolerance
8
plant phytohormones
8
high-salinity conditions
8
high salt
8
metabolic biological
8
genes involved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!