Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionk3s7ggtb8u9roj0u6m52qaoos1r9goth): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: strpos(): Passing null to parameter #1 ($haystack) of type string is deprecated
Filename: models/Detail_model.php
Line Number: 71
Backtrace:
File: /var/www/html/application/models/Detail_model.php
Line: 71
Function: strpos
File: /var/www/html/application/controllers/Detail.php
Line: 252
Function: insertAPISummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated
Filename: helpers/my_audit_helper.php
Line Number: 8919
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8919
Function: str_replace
File: /var/www/html/application/controllers/Detail.php
Line: 255
Function: formatAIDetailSummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM), with commonly used backpropagation-trained recurrent neural networks (RNN) as applied to the task of financial market prediction. Evaluated on a set of large capitalisation stocks on the Australian market, specifically the components of the ASX20, ELM-trained SFNNs showed superior performance over RNNs for individual stock price prediction. While this conclusion of efficacy holds generally, long short-term memory (LSTM) RNNs were found to outperform for a small subset of stocks. Subsequent analysis identified several areas of performance deviations which we highlight as potentially fruitful areas for further research and performance improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525949 | PMC |
http://dx.doi.org/10.1007/s00521-022-07792-3 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Neurosurgery and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, Institute of Artificial Intelligence, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361102, China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005, China. Electronic address:
Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The current gold standard for diagnosing GBM during surgery is pathology, but it is time-consuming.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India. Electronic address:
Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing.
View Article and Find Full Text PDFPrev Vet Med
December 2024
Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow 30-059, Poland. Electronic address:
The purpose of the paper was to apply an Artificial Neural Networks with Radial Basis Function to develop an application model for diagnosing a subclinical ketosis type I and II in dairy cattle. While building the neural network model, applied methodology was compatible to the procedures used in Data Mining processes. The data set was created based on the composition of milk samples of 1520 Polish Holstein-Friesian cows.
View Article and Find Full Text PDFNeural Netw
December 2024
Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, PR China.
Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, and leverage the strengths of both modalities to achieve better classification results. In this work, we propose MCA-GCN, a Multi-stream Cross-Attention and Graph Convolutional Network-based classification method for AD patients.
View Article and Find Full Text PDFNeural Netw
December 2024
School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China; Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu, 611731, Sichuan, China. Electronic address:
Neural networks have significant advantages in the estimation of uncertainty dynamics, which can afford highly accurate prediction outcomes and enhance control robustness. With this in mind, this study presents a neural network-based method to investigate the uncertain target enclosing control problem for multi-agent systems over signed networks. Firstly, a nominal target enclosing controller is constructed by adding the target information component into the classical bipartite consensus error, in which the multi-agent system can be grouped to enclose the target from opposite sides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!