Antibody apparent solubility prediction from sequence by transfer learning.

iScience

BioTechnology Discovery Research, Eli Lilly Biotechnology Center, San Diego, CA 92121, USA.

Published: October 2022

Developing therapeutic monoclonal antibodies (mAbs) for the subcutaneous administration requires identifying mAbs with superior solubility that are amenable for high-concentration formulation. However, experimental screening is often material and labor intensive. Here, we present a strategy (named solPredict) that employs the embeddings from pretrained protein language modeling to predict the apparent solubility of mAbs in histidine (pH 6.0) buffer. A dataset of 220 diverse, in-house mAbs were used for model training and hyperparameter tuning through 5-fold cross validation. solPredict achieves high correlation with experimental solubility on an independent test set of 40 mAbs. Importantly, solPredict performs well for both IgG1 and IgG4 subclasses despite the distinct solubility behaviors. This approach eliminates the need of 3D structure modeling of mAbs, descriptor computation, and expert-crafted input features. The minimal computational expense of solPredict enables rapid, large-scale, and high-throughput screening of mAbs using sequence information alone during early antibody discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535432PMC
http://dx.doi.org/10.1016/j.isci.2022.105173DOI Listing

Publication Analysis

Top Keywords

apparent solubility
8
mabs
7
solubility
5
antibody apparent
4
solubility prediction
4
prediction sequence
4
sequence transfer
4
transfer learning
4
learning developing
4
developing therapeutic
4

Similar Publications

This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.

View Article and Find Full Text PDF

The Arabian/Persian Gulf, a marginal sea of the northern Indian Ocean, has been significantly impacted by human activities, leading to a rise in harmful algal blooms (HABs). This study investigates the summer blooming of an ichthyotoxic phytoflagellate Chattonella marina var. antiqua and associated fish-kill in Kuwaiti waters, connecting the events to a previous dust storm and eutrophication status in the coastal waters of the Northern Arabian Gulf (NAG).

View Article and Find Full Text PDF

Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained.

View Article and Find Full Text PDF

Physical and rheological properties of agglomerated milk protein isolate-guar gum mixtures: effect of binder type and concentration.

Food Sci Biotechnol

January 2025

Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Gyeonggi Korea.

Article Synopsis
  • The study focused on how adding sugar and sugar alcohol binders in the fluidized-bed agglomeration process affects the physical properties of milk protein isolate (MPI) and guar gum (GG) mixtures.
  • The agglomerated mixtures, known as AMGs, were found to have larger, more porous particles that improved solubility and flowability compared to non-agglomerated mixtures (NMG).
  • However, AMGs had lower apparent viscosity and viscoelastic properties than NMG, which decreased further with more binder concentration, indicating a change in interaction between the protein and gum.
View Article and Find Full Text PDF

Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!