Biofilms are colonies of bacteria embedded inside a complicated self-generating intercellular. The formation and scatter of a biofilm is an extremely complex and progressive process in constant cycles. Once formed, it can protect the inside bacteria to exist and reproduce under hostile conditions by establishing tolerance and resistance to antibiotics as well as immunological responses. In this article, we reviewed a series of innovative studies focused on inhibiting the development of biofilm and summarized a range of corresponding therapeutic methods for biological evolving stages of biofilm. Traditionally, there are four stages in the biofilm formation, while we systematize the therapeutic strategies into three main periods precisely:(i) period of preventing biofilm formation: interfering the colony effect, mass transport, chemical bonds and signaling pathway of plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:targeting several pivotal molecules, for instance, polysaccharides, proteins, and extracellular DNA (eDNA) polysaccharide hydrolases, proteases, and DNases respectively in the second stage before developing into irreversible biofilm; (iii) period of eliminating biofilm formation: applying novel multifunctional composite drugs or nanoparticle materials cooperated with ultrasonic (US), photodynamic, photothermal and even immune therapy, such as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils and even immunological memory aroused by plasmocytes. The multitargeted or combinational therapies aim to prevent it from developing to the stage of maturation and dispersion and eliminate biofilms and planktonic bacteria simultaneously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534288PMC
http://dx.doi.org/10.3389/fcimb.2022.1003033DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
biofilm
10
stages biofilm
8
formation
5
strategies prevent
4
prevent curb
4
curb eliminate
4
eliminate biofilm
4
formation based
4
based characteristics
4

Similar Publications

Genotypic diversity and virulence factors of Klebsiella pneumoniae in a North Indian tertiary care hospital.

BMC Infect Dis

December 2024

Lab Services and Infection Control; Chief, Education and Research, Artemis Hospitals, Sector-51, Gurugram, Haryana, India.

Klebsiella pneumoniae, a pathogen of concern worldwide can be classified as classical K. pneumoniae (cKp) and Hypervirulent K. pneumoniae (HvKp).

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia.

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Chlorhexidine-loaded microneedles for treatment of oral diseases.

Int J Pharm

December 2024

Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:

Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.

View Article and Find Full Text PDF

Beyond protein folding: The pleiotropic functions of PPIases in cellular processes and microbial virulence.

Biochim Biophys Acta Gen Subj

December 2024

Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India. Electronic address:

Peptidyl prolyl cis/trans isomerases (PPIases), a ubiquitously distributed superfamily of enzymes, associated with signal transduction, trafficking, assembly, biofilm formation, stress tolerance, cell cycle regulation, gene expression and tissue regeneration, is a key regulator of metabolic disorders and microbial virulence. This review assumes an integrative approach, to provide a holistic overview of the structural and functional diversity of PPIases, examining their conformational dynamics, cellular distribution, and physiological significance. We explore their intricate involvement in cellular processes and virulence modulation in both eukaryotic and prokaryotic systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!