Effects of nanocarbon solution treatment on the nutrients and glucosinolate metabolism in broccoli.

Food Chem X

China Vegetable Biotechnology (Shouguang) Co., Ltd, Shouguang 262700, China.

Published: October 2022

The effects of a nanocarbon solution on the nutrients, glucosinolate metabolism and glucoraphanin pathway in broccoli were investigated. Significant positive linear relationships were observed between the nanocarbon solution and total protein yield, although effects on the soluble sugars, vitamin C and dry matter production were not observed. All nanocarbon solutions significantly increased the glucoraphanin content ( < 0.05), and the 18.75 L·ha nanocarbon solution maximally increased the glucoraphanin content by 22.9 %. However, these treatments also significantly reduced the contents of glucobrassicin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin and neoglucobrassicin. Further research demonstrated that the 18.75 L·ha nanocarbon solution significantly upregulated the , , , , , and expression levels, which directly resulted in the accumulation of glucoraphanin and glucoerucin. This study provides insights into the prospective nanotechnological approaches for developing efficient and environmentally friendly nanocarbon solution for use on crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532756PMC
http://dx.doi.org/10.1016/j.fochx.2022.100429DOI Listing

Publication Analysis

Top Keywords

nanocarbon solution
12
effects nanocarbon
8
nutrients glucosinolate
8
glucosinolate metabolism
8
observed nanocarbon
8
solution treatment
4
treatment nutrients
4
metabolism broccoli
4
broccoli effects
4
solution nutrients
4

Similar Publications

Advanced carbon-metal hybrid materials with controllable electronic and optical properties, as well as chemical reactivities, have attracted significant attention for emerging applications, including energy conversion and storage, catalysis and environmental protection. However, the commercialization of these materials is hampered by several vital problems, including energy-intensive synthesis and expensive chemicals, and inefficient control of their structures and properties. Herein, we report the simple and controllable engineering of nanocarbon-metal self-assembled silver nanocatalysts (SSNs) derived from polycarbonate (PC)-based optical discs using microplasmas under ambient conditions.

View Article and Find Full Text PDF

Ternary NASICON-Type NaVMnFe(PO)/NC@CNTs Cathode with Reversible Multielectron Reaction and Long Life for Na-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.

Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.

View Article and Find Full Text PDF

We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

Optical Biosensor for Bacteremia detection from human blood samples at a label-free Liquid Crystal-Aqueous Interface: A Rapid and Point-of-Care approach.

J Colloid Interface Sci

April 2025

Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India. Electronic address:

Detection of bacteremia requires recognizing bloodstream bacteria. Early identification of bacteremia is imperative for treatment and prevents the escalation to systemic infections like septicaemia. This paper introduces a novel, label-free biosensor based on liquid crystals (LCs), designed to offer rapid and reliable optical detection of blood pathogens without using traditional PCR methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!