A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metal-Free Homocoupling of Pyrene inside the Pores of Mesoporous Carbons via Electrochemical Oxidation: Application for Electrochemical Capacitors. | LitMetric

A pyrene dimer (PYD) is synthesized by electrochemical oxidation homocoupling of pyrene (PY) inside the pores of MgO-templated mesoporous carbons without any metal catalysts or organic solvents. The resulting MgO-C/PYD hybrids can be used as high-performance aqueous electrochemical capacitor electrodes due to the reversible redox property of PYD and large contact area between the hybridized PYD and conductive carbon surfaces, which enable rapid charge transfer at the large contact interface. In our previous study, PY was considered to polymerize through electrochemical oxidation, and activated carbon with the pore sizes of ∼4 nm was used as a porous carbon substrate. In this study, the MgO-templated carbons have the average pore sizes of 5, 10, and 30 nm, and their large mesopore volumes can accommodate a large amount of PYD for enhancing the capacitance. To develop high-performance electrochemical capacitors, the dependence of the capacitance enhancement and the capacitance retention on the amount of PY and the pore sizes of MgO-templated carbons are studied. It is found that mesopores are necessary for fast charging/discharging, but the capacitance retention and capacitance enhancement decrease with increasing the mesopore sizes and the amount of PY due to the decreased utilization ratio of PY.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535701PMC
http://dx.doi.org/10.1021/acsomega.2c04511DOI Listing

Publication Analysis

Top Keywords

electrochemical oxidation
12
pore sizes
12
homocoupling pyrene
8
pyrene inside
8
inside pores
8
mesoporous carbons
8
electrochemical capacitors
8
large contact
8
mgo-templated carbons
8
capacitance enhancement
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!