In the eutectic mixture of bis(2,2-dinitropropyl) acetal (BDNPA) and bis(2,2-dinitropropyl) formal (BDNPF), also known as nitroplasticizer (NP), -phenyl-β-naphthylamine (PBNA), an antioxidant, is used to improve the long-term storage of NP. PBNA scavenges nitrogen oxides (e.g., NO radicals) that are evolved from NP decomposition, hence slowing down the degradation of NP. Yet, little is known about the associated chemical reaction between NP and PBNA. Herein, using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF), we thoroughly characterize nitrated PBNA derivatives with up to five NO moieties in terms of retention time, mass verification, fragmentation pattern, and correlation with NP degradation. The propagation of PBNA nitration is found to depend on the temperature and acidity of the NP system and can be utilized as an indirect, yet reliable, means of determining the extent of NP degradation. At low temperatures (<55 °C), we find that the scavenging efficiency of PBNA is nullified when three NO moieties are added to PBNA. Hence, the dinitro derivative can be used as a reliable indicator for the onset of hydrolytic NP degradation. At elevated temperatures (≥55 °C) and especially in the dry environment, the trace amount of water in the condensed NP (<700 ppm) is essentially removed, which accelerates the production of reactive species (e.g., HONO, HNO and NO ). In return, the increased acidity due to HNO formation catalyzes the hydrolysis of NP and PBNA nitro derivatives into 2,2-dinitropropanol (DNPOH) and nitrophenol/dinitrophenol, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535708 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05011 | DOI Listing |
Front Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
Drug Des Devel Ther
January 2025
Department of Hematology, Jining NO. 1 People's Hospital, Jining, 272000, People's Republic of China.
Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Graduate Program in Food Science and Technology, State University of Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, Paraná 84030-900 Brazil.
Sweet potato ( (L.) Lam.) is a tuber root crop with high economical potential and China is responsible for harvesting roughly 70% of the world production.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
Objective: This study focuses on the development and evaluation of nanostructured lipid carriers (NLCs) loaded with aloperine as a potential therapeutic approach for the treatment of pulmonary arterial hypertension.
Methods: The NLCs were designed to enhance the solubility, stability, and bioavailability of aloperine, a compound with vasodilatory and anti-inflammatory properties. Through a series of experiments including single-factor experimentation, transmission electron microscopy, high-performance liquid chromatography, in vivo pharmacokinetics, and tissue distribution studies, we assessed the physicochemical properties, drug release profiles, and in vitro and in vivo performance of this novel nanocarrier.
Front Mol Neurosci
January 2025
Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
Introduction: To further advance our understanding of Muscular Dystrophies (MDs) and Spinocerebellar Ataxias (SCAs), it is necessary to identify the biological patterns associated with disease pathology. Although progress has been made in the fields of genetics and transcriptomics, there is a need for proteomics and metabolomics studies. The present study aimed to be the first to document serum metabolic signatures of MDs (DMD, BMD, and LGMD 2A) SCAs (SCA 1-3), from a South Asian perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!