The purpose of this investigation was to design novel alternating copolymers (monomethylolurea-glyoxal, MMU-G) as adhesives for wood manufacturing. MMU-G were synthesized under acid (pH = 5) conditions. After the 120-day storage period, the MMU-G resins were used for plywood production, which exhibited a wet shear strength of about 2.15 MPa, similar to the freshly prepared MMU-G resin. The excellent water resistance and long storage stability showed that MMU-G has particular characteristics and properties all of their own, which, in certain respects, are very different from those of urea-formaldehyde (UF) adhesives. The X-ray diffraction results showed that only a few crystallinities occurred in MMU-G resins, indicating the presence of long side chains in the MMU-G polymer structures, leading to better adhesion strength than UF resins. The structure characteristics of the MMU-G resin were studied by Fourier transform infrared and electrospray ionization mass spectrometry, and a possible molecular structure has been inferred, which is consistent with spectroscopic results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535700 | PMC |
http://dx.doi.org/10.1021/acsomega.2c03864 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!