A Deep Neural Network-Based Model for Quantitative Evaluation of the Effects of Swimming Training.

Comput Intell Neurosci

Information Engineering Department, Suzhou University, Suzhou 234000, China.

Published: October 2022

This paper analyzes the quantitative assessment model of the swimming training effect based on the deep neural network by constructing a deep neural network model and designing a quantitative assessment model of the swimming training effect. This paper addresses the problem of not considering the influence of the uncertainties existing in the virtual environment when evaluating swimming training and adds the power of the delays in the actual training operation environment, which is used to improve the objectivity and usability of swimming training evaluation results. To better measure the degree of influence of uncertainties, a training evaluation software module is developed to validate the usability of the simulated training evaluation method using simulated case data and compare it with the data after training evaluation using the unimproved evaluation method to verify the correctness and objectivity of the evaluation method in this paper. In the experiments, the feature extractor is a deep neural network, and the classifier is a gradient-boosting decision tree with integrated learning advantages. In the experimental comparison, we can achieve more than 60% accuracy and no more than a 1.00% decrease in recognition rate on DBPNN + GBDT, 78.5% parameter reduction, and 54.5% floating-point reduction on DPBNN. We can effectively reduce 32.1% of video memory occupation. It can be concluded from the experiments that deep neural network models are more effective and easier to obtain relatively accurate experimental results than shallow learning when facing high-dimensional sparse features. At the same time, deep neural networks can also improve the prediction results of external learning models. Therefore, the experimental results of this model are most intuitively accurate when combining deep neural networks with gradient boosting decision trees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546648PMC
http://dx.doi.org/10.1155/2022/5508365DOI Listing

Publication Analysis

Top Keywords

deep neural
28
swimming training
20
neural network
16
training evaluation
16
evaluation method
12
training
9
training paper
8
quantitative assessment
8
assessment model
8
model swimming
8

Similar Publications

Novel transfer learning based bone fracture detection using radiographic images.

BMC Med Imaging

January 2025

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients.

View Article and Find Full Text PDF

Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.

View Article and Find Full Text PDF

A Faster Privacy-Preserving Medical Image Diagnosis Scheme with Machine Learning.

J Imaging Inform Med

January 2025

College of Computer, Chongqing University, No. 55 Daxuecheng South Rd, Shapingba, 401331, Chongqing, China.

Convolutional neural networks (CNNs) have become indispensable to medical image diagnosis research, enabling the automated differentiation of diseased images from extensive medical image datasets. Due to their efficacy, these methods raise significant privacy concerns regarding patient images and diagnostic models. To address these issues, some researchers have explored privacy-preserving medical image diagnosis schemes using fully homomorphic encryption (FHE).

View Article and Find Full Text PDF

Detecting brain tumours (BT) early improves treatment possibilities and increases patient survival rates. Magnetic resonance imaging (MRI) scanning offers more comprehensive information, such as better contrast and clarity, than any alternative scanning process. Manually separating BTs from several MRI images gathered in medical practice for cancer analysis is challenging and time-consuming.

View Article and Find Full Text PDF

Understanding human behavior and human action recognition are both essential components of effective surveillance video analysis for the purpose of guaranteeing public safety. However, existing approaches such as three-dimensional convolutional neural networks (3D CNN) and two-stream neural networks (2SNN) have computational hurdles due to the significant parameterization they require. In this paper, we offer HARNet, a specialized lightweight residual 3D CNN that is built on directed acyclic graphs and was created expressly to handle these issues and achieve effective human action detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!