AI Article Synopsis

Article Abstract

Rotavirus vaccination has been shown to reduce rotavirus burden in many countries, but the long-term magnitude of vaccine impacts is unclear, particularly in low-income countries. We use a transmission model to estimate the long-term impact of rotavirus vaccination on deaths and disability adjusted life years (DALYs) from 2006 to 2034 for 112 low- and middle-income countries. We also explore the predicted effectiveness of a one- vs two- dose series and the relative contribution of direct vs indirect effects to overall impacts. To validate the model, we compare predicted percent reductions in severe rotavirus cases with the percent reduction in rotavirus positivity among gastroenteritis hospital admissions for 10 countries with pre- and post-vaccine introduction data. We estimate that vaccination would reduce deaths from rotavirus by 49.1 % (95 % UI: 46.6-54.3 %) by 2034 under realistic coverage scenarios, compared to a scenario without vaccination. Most of this benefit is due to direct benefit to vaccinated individuals (explaining 69-97 % of the overall impact), but indirect protection also appears to enhance impacts. We find that a one-dose schedule would only be about 57 % as effective as a two-dose schedule 12 years after vaccine introduction. Our model closely reproduced observed reductions in rotavirus positivity in the first few years after vaccine introduction in select countries. Rotavirus vaccination is likely to have a substantial impact on rotavirus gastroenteritis and its mortality burden. To sustain this benefit, the complete series of doses is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351612PMC
http://dx.doi.org/10.1016/j.vaccine.2022.09.072DOI Listing

Publication Analysis

Top Keywords

rotavirus vaccination
16
impact rotavirus
12
rotavirus
10
long-term impact
8
2006 2034
8
vaccination reduce
8
rotavirus positivity
8
vaccine introduction
8
vaccination
6
countries
6

Similar Publications

Background/objectives: Rotavirus (RV) is the primary cause of gastroenteritis in children worldwide, contributing significantly to morbidity and mortality, particularly among children under five years of age. The introduction of Rotavirus vaccines (RVV) has markedly reduced RV-related childhood deaths, especially in Europe, where substantial reductions in hospitalizations and disease prevalence have been observed. Despite these advances, RVV uptake in Italy remains below the desired targets, with notable regional disparities.

View Article and Find Full Text PDF

: The etiology of type 1 diabetes (T1D) remains an area of active research, with genetic and environmental factors being investigated. This meta-analysis aimed to determine if rotavirus vaccination influences the onset of T1D in children. : Following PRISMA 2020 guidelines, two researchers independently searched multiple databases, including PubMed and Google Scholar, for studies published in English from 2006 to September 2024.

View Article and Find Full Text PDF

Prevalence and genetic characterization of viral gastroenteritis in hospitalized children aged <5 years in Yunnan Province, China, 2020-2022.

Front Pediatr

January 2025

Yunnan Provincial Key Laboratory of Public Health and Biosafety & Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, China.

Background: Rotavirus (RV), norovirus (NoV), human enteric adenovirus (HAdV), human astrovirus (HAstV), and sapovirus (SaV) are important viral causes of acute gastroenteritis (AGE) in children. However, limited information is available regarding AGE in Yunnan, Southwest China.

Methods: To investigate the prevalence of group A rotavirus (RVA), norovirus genogroups I (GI) and II (GII), and HAdV, HAstV, and SaV in children aged <5 years hospitalized with AGE between 2020 and 2022.

View Article and Find Full Text PDF

Breast milk delivery of an engineered dimeric IgA protects neonates against rotavirus.

Mucosal Immunol

January 2025

Weill Cornell Medicine Department of Pediatrics, Division of Infectious Disease, New York, NY, USA. Electronic address:

Dimeric IgA (dIgA) is the dominant antibody in many mucosal tissues. It is actively transported onto mucosal surfaces as secretory IgA (sIgA) which plays an integral role in protection against enteric pathogens, particularly in young children. Therapeutic strategies that deliver engineered, potently neutralizing antibodies directly into the infant intestine through breast milk could provide enhanced antimicrobial protection for neonates.

View Article and Find Full Text PDF

A single residue switch mediates the broad neutralization of Rotaviruses.

Nat Commun

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.

Broadly neutralizing antibodies (bNAbs) could offer escape-tolerant and lasting protection against viral infections and therefore guide development of broad-spectrum vaccines. The increasing challenge posed by viral evolution and immune evasion intensifies the importance of the discovery of bNAbs and their underlying neutralization mechanism. Here, focusing on the pivotal viral protein VP4 of rotavirus (RV), we identify a potent bNAb, 7H13, exhibiting broad-spectrum neutralization across diverse RV genotypes and demonstrating strong prevention of virus infection in female mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!