Oxygen-releasing hydrogels promote burn healing under hypoxic conditions.

Acta Biomater

Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China. Electronic address:

Published: December 2022

Hypoxic nonhealing wounds are a common complication in chronic patients, and chronic hypoxia is the main reason for delayed wound healing, so local wound oxygenation may be an effective way to address this problem. Here, we proposed a system consisting of oxygen-releasing microsphere (GC) and self-healing hydrogel (QGO). QGO/GC hydrogel could promote survival, migration and tube formation of human umbilical vein endothelial cells under hypoxic conditions. Moreover, QGO/GC hydrogels exhibited biocompatibility in vitro and in vivo. The hypoxic mouse burn model further confirmed that QGO/GC hydrogel could promote tissue repair by reducing inflammation (TNF-α and IL-1β), increasing angiogenesis (CD31, VEGF and α-SMA) and collagen deposition. This study provided an effective oxygen-releasing hydrogel that could offer a simple and effective method for the clinical treatment of chronic hypoxic wounds. STATEMENT OF SIGNIFICANCE: Burn injury is caused by various exogenous factors such as friction, cold, radiations, electricity, chemicals, hot surfaces or liquids. Severe burn can damage the entire skin layer, and the healing process is delayed due to an unbalanced inflammatory response, excessive reactive oxygen species, lack of angiogenesis (insufficient nutrient and oxygen availability), and susceptibility to infection. In the present study, we proposed an oxygen-releasing hydrogel (QGO/GC). QGO/GC hydrogel could promote survival, migration, and tube formation of human umbilical vein endothelial cells under hypoxic conditions. And QGO/GC hydrogels could promote tissue repair by reducing inflammation, increasing angiogenesis and collagen deposition. This work provided an effective oxygen-releasing hydrogel for the clinical management of chronic hypoxic wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.09.077DOI Listing

Publication Analysis

Top Keywords

hypoxic conditions
12
qgo/gc hydrogel
12
hydrogel promote
12
oxygen-releasing hydrogel
12
hydrogels promote
8
promote survival
8
survival migration
8
migration tube
8
tube formation
8
formation human
8

Similar Publications

Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.

View Article and Find Full Text PDF

The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.

View Article and Find Full Text PDF

A Droplet Microfluidic Sensor for Point-of-Care Measurement of Plasma/Serum Total Free Thiol Concentrations.

Anal Chem

January 2025

Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.

Total free thiols are an important marker of the whole-body redox state, which has been shown to be associated with clinical outcome in health and disease. Recent investigations have suggested that increased insight may be gained by monitoring alterations of redox state in response to exercise and hypoxia and to monitor redox trajectories in disease settings. However, conducting such studies is challenging due to the requirement for repeated venous blood sampling and intensive lab work.

View Article and Find Full Text PDF

Th2 cells must sense and adapt to the tissue milieu in order to provide protective host immunity and tissue repair. Here, we examined the mechanisms promoting Th2 cell differentiation and function within the small intestinal lamina propria. Single cell RNA-seq analyses of CD4 T cells from the small intestinal lamina propria of helminth infected mice revealed high expression of the gene , encoding the transcription factor hypoxia-inducible factor 2a (HIF2α).

View Article and Find Full Text PDF

Background: For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!