Objectives: Mycobacterium kansasii pulmonary disease is frequently misdiagnosed and treated as tuberculosis, especially in countries with high tuberculosis burden. This study aimed to investigate the drug resistance profile of M.kansasii in patients with M.kansasii pulmonary disease in Shanghai and to determine the variations in drug resistance after 2 months of antimycobacterial treatment.
Methods: All patients with a diagnosis of M.kansasii pulmonary disease from 2017 to 2019 in Shanghai were retrospectively analysed. Whole-genome sequencing was performed, and the minimum inhibitory concentration (MIC) to antimycobacterial drugs was measured using the broth microdilution method.
Results: In total, 191 patients had a diagnosis of M.kansasii pulmonary disease. Of them, 24.1% (46/191) had persistent positive culture after 2 months of antimycobacterial treatment. Whole-genome sequencing revealed that the 46 paired isolates had a difference of <17 single nucleotide polymorphisms, thus excluding the possibility of exogenous reinfection. More than 90% of the baseline isolates were sensitive to rifampin, clarithromycin, moxifloxacin, or amikacin, whereas a high resistance to ethambutol (118/191, 61.8%) and 4 μg/mL of isoniazid (32/191, 16.8%) were observed. Two isolates presented high resistance to rifamycin (i.e. a rifampin MIC of >8 μg/mL and a rifabutin MIC of 8 μg/mL) both containing the rpoB mutation (S454L). The increase of MIC to rifampin, ethambutol, and/or isoniazid was identified in 50.0% (23/46) of the patients.
Discussion: A high prevalence of innate resistance to ethambutol and isoniazid was observed among circulating M.kansasii clinical strains in Shanghai. The increase in drug resistance under empirical antimycobacterial treatment highlighted the urgency of definitive species identification before initiating treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmi.2022.10.002 | DOI Listing |
Cell Rep
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China. Electronic address:
Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region-F.R., Iraq.
Klebsiella pneumoniae is a non-motile, encapsulated, environmental gram-negative bacterium. Once the bacteria have infiltrated the body, they can display substantial degrees of resistance to drugs and virulence. Extended Spectrum Beta-Lactamases (ESBLs) are most typically seen in K.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Plant Improvement and Valorization of Agro-resources, National School of Engineers of Sfax, University of Sfax, Sfax LR.16ES20, Tunisia.
Urinary tract infections (UTIs) are recognized as the second most common medical condition, following respiratory infections. Despite the availability of numerous efficacious antibiotics for the management of UTIs, the rising incidence of bacterial resistance presents significant challenges in the treatment of these infections. Bacteria are endowed with the ability to reproduce and develop resistance mechanisms against antibiotics.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
Antibiotics play a fundamental role in protecting millions of lives from infectious diseases. However, an important drawback of antibiotic treatment is that each advancement was followed by the development of resistance. This is due to the fact that the majority of pathogenic bacteria are capable of becoming resistant to a number of antimicrobial agents.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department Medical Laboratory Technology, College of Medical Technology, University of Al-Farahidi, Baghdad, Iraq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!