Biofuels have gained much attention as a potentially sustainable alternative to fossil fuels to tackle climate change and energy scarcity. Hence, the increasing global interest in contributing to the biofuel supply chain (BSC), from biomass feedstock to biofuel production, has led to a huge amount of scientific production in recent years. In this vein, techno-economic analysis (TEA) of biofuel production to estimate total costs and revenues is highly important for transitioning towards a bioeconomy. This research aims to provide a comprehensive image of the body of knowledge in TEA evolution within the BSC domain. To this end, a systematic science mapping analysis, supported by a bibliometric analysis, is carried out on 1104 articles from 1986 to 2021. As a result, performance indicators of the scientific production within the target literature are presented to explain how this literature has evolved. Besides, thematic trends and conceptual structures of TEA of biofuel production are discovered. The results show that (i) biofuel production and consumption need promotion through tax measures and price subsidies, (ii) the development of cost-competitive algal biofuels has faced many challenges over recent years, and (iii) TEA of algal biofuels to identify commercial improvements and increase the economic feasibility is still lacking, which calls for more in-depth investigations. Consequently, current challenges and future perspectives of TEA in the BSC domain are rendered. The provided insights enable researchers and decision-makers involved in BSCs to (i) capture the most influential contributors to the field and (ii) identify major research hotspots and potential directions for further development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136755 | DOI Listing |
Lett Appl Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28 a, 10000 Zagreb, Croatia.
This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.
View Article and Find Full Text PDFMolecules
January 2025
Orlen Unicre a.s., Revolucňí 1521/84, 400 01 Ústí nad Labem, Czech Republic.
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China.
With the rapid development of synthetic biology, genetic engineering, and molecular manipulation methods in recent years, microalgae, as representatives of microbial cell factories, have been widely used as hosts in the production of high-value bioproducts, such as oils, pigments, proteins, and biofuels, demonstrating promising prospects of application in biochemical energy, food and drugs, and environmental protection. Despite these advancements, the low production efficiency of microalgae limits their industrial application. In addition to strain improvement and culture condition optimization, the regulation by exogenous chemical additives serves as a promising optimization strategy.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India. Electronic address:
The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!