Unlabelled: Dyskinesia is characterized by abnormal involuntary movements (AIMs). Such movements are considered restrictive problem associated with the chronic use of L-dopa in Parkinson's disease (PD) treatment; the thing that renders the definite pathological mechanism unclear. However, there is a correlation between excitotoxicity of glutamatergic NMDA receptors, neuroinflammation, and oxidative stress in the lesioned nigrostriatal pathway; which mediates the firing of basal ganglia neurons involved in dyskinesia.

Aims: The current study investigated the novel neuroprotective effect of agmatine in ameliorating both PD and dyskinesia with a focus on its antioxidant, anti-inflammatory, and anti-apoptotic potentiality through Nrf2 activation and suppression of HMGB1/RAGE/TLR4/MYD88/NF-κB signaling pathway.

Main Methods: PD was induced in animals by ten consecutive doses of rotenone (3 mg/kg/day; s.c.). Agmatine (100 mg/kg/day; i.p.) was injected for 16 days after modeling PD either alone or in combination with L-dopa/carbidopa (50/25 mg/kg/day; i.p.).

Key Findings: A statically significant deteriorating effect was showed on the behavioral, neurochemical, histopathological, and immunochemical analysis of PD rats. Moreover, dyskinesia observed in PD rats that received L-dopa. Agmatine improved animals' behavior and abolished dyskinetic AIMs. It inhibited NMDA receptors expression in nigral tissues leading to inhibition of inflammatory and oxidative stress cascades. It increased both nigral TH immunoreactive cells and striatal dopamine contents. Besides, it increased the antioxidant defense mechanism of Nrf2/TAC contents along with a significant decrease of HMGB1/RAGE/TLR4/MYD88/NF-κB protein expression.

Significance: The current investigated data signifies the novel role of agmatine in ameliorating both PD and dyskinesia through mediating NMDA receptors, Nrf2, and HMGB1/RAGE/TLR4/NF-κB signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2022.121049DOI Listing

Publication Analysis

Top Keywords

nmda receptors
12
suppression hmgb1/rage/tlr4/myd88/nf-κb
8
hmgb1/rage/tlr4/myd88/nf-κb signaling
8
oxidative stress
8
agmatine ameliorating
8
ameliorating dyskinesia
8
dyskinesia
5
agmatine-mediated inhibition
4
nmda
4
inhibition nmda
4

Similar Publications

There is an ongoing need to identify novel pharmacological agents for the effective treatment of depression. One emerging candidate, which has demonstrated rapid-acting antidepressant effects in treatment-resistant groups, is nitrous oxide (NO)-a gas commonly used for sedation and pain management in clinical settings and with a range of pharmacological effects, including antagonism of NMDA glutamate receptors. A growing body of evidence suggests that subanaesthetic doses of NO (50%) can interfere with the reconsolidation of maladaptive memories in healthy participants and across a range of disorders.

View Article and Find Full Text PDF

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Introduction: Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau () gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models.

Methods: To investigate the effects of gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!