Dynamic fracture regimes for initially prestressed elastic chains.

Philos Trans A Math Phys Eng Sci

Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ, UK.

Published: November 2022

We study the propagation of a bridge crack in an anisotropic multi-scale system involving two discrete elastic chains that are interconnected by links and possess periodically distributed inertia. The bridge crack is represented by the destruction of every other link between the two elastic chains, and this occurs with a uniform speed. This process is assumed to be sustained by energy provided to the system through its initial configuration, corresponding to the alternating application of compression and tension to neighbouring links. The solution, based on the Wiener-Hopf technique and presented in Ayzenberg-Stepanenko . (Ayzenberg-Stepanenko 2014 , 20140121 (doi:10.1098/rspa.2014.0121)) is used to compute the profile of the medium undergoing failure. We investigate when this solution, representing the steady failure process, is physically acceptable. It is shown that the analytical solution is not always physically applicable and can be used to determine the onset of non-steady failure regimes. These arise from the presence of critical deformations in the wake of the crack front at the sites of the intact links. Additionally, we demonstrate that the structural integrity of the discrete elastic chains can significantly alter the range of speeds for which the bridge crack can propagate steadily. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548400PMC
http://dx.doi.org/10.1098/rsta.2021.0395DOI Listing

Publication Analysis

Top Keywords

elastic chains
16
bridge crack
12
discrete elastic
8
dynamic fracture
4
fracture regimes
4
regimes for initially
4
for initially prestressed
4
elastic
4
prestressed elastic
4
chains
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!