To date, brain-computer interfaces (BCIs) have proved to play a key role in many medical applications, for example, the rehabilitation of stroke patients. For post-stroke rehabilitation, the BCIs require the EEG electrodes to precisely translate the brain signals of patients into intended movements of the paralyzed limb for months. However, the gold standard silver/silver-chloride electrodes cannot satisfy the requirements for long-term stability and preparation-free recording capability in wearable EEG devices, thus limiting the versatility of EEG in wearable BCI applications over time outside the rehabilitation center. Here, we design a long-term stable and low electrode-skin interfacial impedance conductive polymer-hydrogel EEG electrode that maintains a lower impedance value than gel-based electrodes for 29 days. With this technology, EEG-based long-term and wearable BCIs could be realized in the near future. To demonstrate this, our designed electrode is applied for a wireless single-channel EEG device that detects changes in alpha rhythms in eye-open/eye-close conditions. In addition, we validate that the designed electrodes could capture oscillatory rhythms in motor imagery protocols as well as low-frequency time-locked event-related potentials from healthy subjects, with similar or better performance than gel-based electrodes. Finally, we demonstrate the use of the designed electrode in online BCI-based functional electrical stimulation, which could be used for post-stroke rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114756 | DOI Listing |
ACS Appl Mater Interfaces
October 2024
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
The quality of the electrocardiography (ECG) signals depends on the effectiveness of the electrode-skin connection. However, current electrocardiogram electrodes (ECGE) often face challenges such as high contact impedance and unstable conductive networks, which hinder accurate measurement during movement and long-term wearability. Herein, in this work, a bionic 3D pile textile as an ECGE with high electrical conductivity and flexibility is prepared by a facile, continuous, and high-efficiency electrostatic self-assembly process.
View Article and Find Full Text PDFElectronic textiles (E-textiles) offer great wearing comfort and unobtrusiveness, thus holding potential for next-generation health monitoring wearables. However, the practical implementation is hampered by challenges associated with poor signal quality, substantial motion artifacts, durability for long-term usage, and non-ideal user experience. Here, we report a cost-effective E-textile system that features 3D microfiber-based electrodes for greatly increasing the surface area.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
July 2024
Sensors (Basel)
May 2024
Department of Electrical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.
The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2024
Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!