Haustoria of root-parasitic plants draw nutrients from the roots of host species. While recent studies have assessed host preferences of parasitic plants, how root-exuded chemicals can mediate host tropism and selection by root-parasitic plants is poorly understood. Under greenhouse conditions, we performed two pot experiments to determine whether the root parasite Santalum album selectively forages for superior hosts (N2-fixing Acacia confusa Merr. or Dalbergia odorifera T. Chen) rather than for inferior hosts (non-N2-fixing Bischofia polycarpa (levl.) Airy Shaw or Dracontomelon duperreranum Pierre), and whether S. album uses host root exudates and/or specific chemicals in these root exudates to locate and trigger haustorium formation. Lateral roots and haustoria of S. album seedlings exhibited greater growth in the direction of D. odorifera roots than toward roots from the other three hosts. Comparative metabolic analysis revealed that D. odorifera root exudates were enriched in isoflavonoid, flavonoid and flavone/flavonol biosynthesis pathways, and that the relative contents of flavonoids were significantly greater in the root exudates of D. odorifera than in those of the other three hosts. Root exudates from D. odorifera significantly promoted S. album root growth, haustorium formation and reactive oxygen species accumulation in haustoria. Our results demonstrate that the key step in plant parasitism by S. album is based on root exudation by a host plant; the exudates function as a metabolite signal that activate lateral root growth and haustorium formation. Our results also indicate that flavonoids in the root exudates could play an important role in S. album foraging activity. Information on the responses of root parasites to host root exudates and/or haustorium-inducing chemicals may be useful for selecting superior host species to plant with valuable species of root parasites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpac116 | DOI Listing |
Pest Manag Sci
December 2024
College of Plant Protection, Northeast Agricultural University, Harbin, China.
Background: Phytophthora sojae (Kaufmann and Gerdemann), a pathogenic oomycete, causes one of the most destructive soybean diseases, Phytophthora root and stem rot (PRR). Previous studies have shown that benzoxazines (BXs) such as 6-methoxy-benzoxazolin-2-one (MBOA) and benzoxazoline-2-one (BOA) in maize root exudates inhibit the chemotaxis of zoospores, as well as the mycelial growth and pathogenicity of P. sojae.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months.
View Article and Find Full Text PDFLasers Med Sci
December 2024
Department of Prosthodontics, Faculty of Dentistry, Sabzevar University of Medical Sciences, Sabzevar, Iran.
Purpose: This systematic review and meta-analysis aimed to assess the gingival crevicular fluid (GCF) level of tumor necrosis factor-alpha (TNF-alpha) as a valuable inflammatory cytokine for estimation of the efficacy of adjunctive antimicrobial photodynamic therapy (aPDT) in stage II-IV periodontitis patients.
Methods: This review was conducted in accordance with the PRISMA statements, and registered in PROSPERO (CRD42022321211). An electronic search was conducted for articles comparing the efficacy of aPDT versus scaling and root planing (SRP) published up until June 2023.
ACS Synth Biol
December 2024
Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers.
View Article and Find Full Text PDFMicrobiol Res
December 2024
Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Intercropping is emerging as a sustainable strategy to manage soil-borne diseases, yet the underlying mechanisms remain largely elusive. Here, we investigated how intercropping chrysanthemum (Chrysanthemum morifolium) with ginger (Zingiber officinale) suppressed Fusarium wilt and influenced the associated rhizo-microbiome. Chrysanthemum plants in intercropping systems exhibited a marked reduction in wilt severity and greater biomass compared to those grown in monoculture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!