The oral antiparasitic drug nifurtimox has been used to treat Chagas disease for more than 50 years. Historical studies determined that very little nifurtimox is excreted unchanged, but contemporaneous preclinical studies of radiolabeled nifurtimox found almost all of the radiolabel was rapidly excreted, suggesting that metabolism is extensive. Attempts to study nifurtimox metabolism have had limited success, yet this knowledge is fundamental to characterizing the pharmacokinetics and pharmacodynamics of the drug. We conducted studies using hepatic and renal sources with C-labeled nifurtimox as substrate and obtained samples of urine, plasma, and feces from rats administered 2.5 mg/kg [C]-nifurtimox, and samples of human urine and plasma from phase 1 clinical studies in which participants received a single dose of 120 mg nifurtimox. Analysis of metabolites was done by high-performance liquid chromatography (HPLC)-high-resolution mass spectrometry (HRMS) and HRMS/MS with offline liquid scintillation counting of radiolabeled samples. Surprisingly, only traces of a few metabolites were identified from incubations with hepatocytes and subcellular fractions, but more than 30 metabolites were identified in rat urine, mostly with atypical mass changes. We developed an HRMS scouting method for the analysis of human samples based on the sulfur atom in nifurtimox and the natural abundance of S, as well as a characteristic tandem mass spectrometry (MS/MS) fragmentation of nifurtimox and metabolites. Fragmentation patterns on HRMS/MS were used to propose structures for 18 metabolites (22 including stereoisomers), and based on these structures, the six most abundant products were synthesized and the structures of the synthetic forms were confirmed by HRMS and two-dimensional nuclear magnetic resonance (2D NMR). Overall, we determined that the metabolism of nifurtimox is almost certainly not mediated by typical hepatic and renal drug-metabolizing enzymes, and instead is rapidly metabolized mainly by reduction or nucleophilic attack, with some evidence of oxidation. Knowledge of the most abundant metabolites of nifurtimox affords the possibility of future studies to investigate levels of exposure and possible drug-drug interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682525PMC
http://dx.doi.org/10.1021/acs.chemrestox.2c00210DOI Listing

Publication Analysis

Top Keywords

nifurtimox
11
metabolism nifurtimox
8
hepatic renal
8
urine plasma
8
mass spectrometry
8
metabolites identified
8
metabolites
6
studies
5
structural mechanistic
4
mechanistic investigation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!