Viruses are genetically and structurally diverse, and outnumber cells by orders of magnitude. They can cause acute and chronic infections, suppress, or exacerbate immunity, or dysregulate survival and growth of cells. To identify chemical agents with pro- or antiviral effects we conducted arrayed high-content image-based multi-cycle infection screens of 1,280 mainly FDA-approved compounds with three human viruses, rhinovirus (RV), influenza A virus (IAV), and herpes simplex virus (HSV) differing in genome organization, composition, presence of an envelope, and tropism. Based on Z'-factors assessing screening quality and Z-scores ranking individual compounds, we identified potent inhibitors and enhancers of infection: the RNA mutagen 5-Azacytidine against RV-A16; the broad-spectrum antimycotic drug Clotrimazole inhibiting IAV-WSN; the chemotherapeutic agent Raltitrexed blocking HSV-1; and Clobetasol enhancing HSV-1. Remarkably, the topical antiseptic compound Aminacrine, which is clinically used against bacterial and fungal agents, inhibited all three viruses. Our data underscore the versatility and potency of image-based, full cycle virus propagation assays in cell-based screenings for antiviral agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547564PMC
http://dx.doi.org/10.1038/s41597-022-01733-4DOI Listing

Publication Analysis

Top Keywords

rhinovirus influenza
8
influenza virus
8
herpes simplex
8
simplex virus
8
virus
5
high-content arrayed
4
arrayed compound
4
compound screens
4
screens rhinovirus
4
virus herpes
4

Similar Publications

The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs.

Int J Mol Sci

December 2024

Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland.

Viral respiratory infections are a significant clinical problem among the pediatric population and are one of the leading causes of hospitalization. Most often, upper respiratory tract infections are self-limiting. Still, those that involve the lower respiratory tract are usually associated with asthma exacerbations, leading to worsening or even the initiation of the disease.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic profoundly disrupted the epidemiology of respiratory viruses, driven primarily by widespread non-pharmaceutical interventions (NPIs) such as social distancing and masking. This eight-year retrospective study examines the seasonal patterns and incidence of influenza virus, respiratory syncytial virus (RSV), and other respiratory viruses across pre-pandemic, pandemic, and post-pandemic phases in Jalisco, Mexico. Weekly case counts were analyzed using an interrupted time series (ITS) model, segmenting the timeline into these three distinct phases.

View Article and Find Full Text PDF

The seasonality and epidemiology of viral acute respiratory infections (ARIs) have changed since the coronavirus disease 2019 pandemic. However, molecular-based ARI surveillance has not been conducted in Japan. We developed a regional surveillance program to define the local epidemiology of ARIs.

View Article and Find Full Text PDF

Significant efforts were currently being made worldwide to develop a tool capable of distinguishing between various harmful viruses through simple analysis. In this study, we utilized fluorescence excitation-emission matrix (EEM) spectroscopy as a rapid and specific tool with high sensitivity, employing a straightforward methodological approach to identify spectral differences between samples of respiratory infection viruses. To achieve this goal, the fluorescence EEM spectral data from eight virus samples was divided into training and test sets, which were then analyzed using random forest and support vector machine classification models.

View Article and Find Full Text PDF

After ending the three-year zero COVID policy in China, the epidemiology of other respiratory pathogens has been affected. This study aimed to characterize of common respiratory pathogen infections in pediatric patients hospitalized for acute respiratory tract infections (ARTIs) in Suzhou before and after ending the zero COVID policy. Nasopharyngeal aspirates (NPAs) were obtained from children with ARTIs (aged ≤ 16 years) at the Children's Hospital of Soochow University for the detection of respiratory syncytial virus (RSV), influenza A (FluA), FluB, human parainfluenza virus (HPIV), adenovirus (ADV), human rhinovirus (HRV), bocavirus (BoV), human metapneumovirus (HMPV), and mycoplasma pneumoniae (MP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!