Pseudomonas aeruginosa has a high adaptive capacity, favoring the selection of antibiotic-resistant strains, which are currently considered a global health problem. The purpose of this work was to investigate the rate and distribution of extensively drug-resistant (XDR) P. aeruginosa in pediatric patients with cystic fibrosis (CF) with recurrent infections and to distinguish the current efficacy of antibiotics commonly used in eradication therapy at a Mexican institute focused on children. A total of 118 P. aeruginosa isolates from 25 children with CF (2015-2019) underwent molecular identification, antimicrobial sensitivity tests, and Random Amplified Polymorphic DNA genotyping (RAPD-PCR). The bacterial isolates were grouped in 84 RAPD profiles, revealing a cross-infection between two sisters, whose resistance profile remained unchanged for more than 2 years. Furthermore, 77.1% (91/118) and 51.7% (61/118) of isolates showed in vitro susceptibility to ceftazidime and amikacin, respectively, antibiotics often used in eradication therapy at our institution. As well, 42.4% (50/118) were categorized as multi-drug resistant (MDR) and 12.7% (15/118) were XDR. Of these resistant isolates, 84.6% (55/65) were identified from patients with recurrent infections. The high frequency of XDR strains in children with CF should be considered a caution mark, as such resistance patterns are more commonly found in adult patients. Additionally, amikacin may soon prove ineffective. Careful use of available antibiotics is crucial before therapeutic possibilities are reduced and "antibiotic resistance crisis" worsens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-022-03048-4 | DOI Listing |
Crit Rev Biotechnol
January 2025
Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India.
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of ( emphasizes the critical requirement for novel potent drugs. The demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany. Electronic address:
Mass spectrometry-based proteomics has revolutionized bacterial identification and elucidated many molecular mechanisms underlying bacterial growth, community formation, and drug resistance. However, most research has been focused on a few model bacteria, overlooking bacterial diversity. In this study, we present the most extensive bacterial proteomic resource to date, covering 303 species, 119 genera, and five phyla with over 636,000 unique expressed proteins, confirming the existence of over 38,700 hypothetical proteins.
View Article and Find Full Text PDFPLOS Glob Public Health
January 2025
Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
Extensively drug-resistant (XDR) and pre-XDR- tuberculosis (TB) account for approximately a third of pediatric MDR-TB cases globally. Clinical management is challenging; recommendations are based on limited evidence. We assessed the clinical outcomes for children and adolescents treated for XDR-and pre-XDR-TB.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India.
Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.
View Article and Find Full Text PDF<b>Background and Objective:</b> It is well documented that Whole Genome Sequencing (WGS) has recently used to explore new resistance patterns and track the dissemination of extensive and pan drug-resistant microbes in healthcare settings. This article explores the link between traumatic infections caused by road traffic accidents (RTAs) leading to coma and the development of chest infections caused by extensively drug-resistant (XDR) <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i>. <b>Materials and Methods:</b> The study was carried out from March to December 2022 which included a 45-year-old male patient admitted to the ICU of Al Ramadi Teaching Hospitals following a severe RTA that resulted in a TBI and subsequent coma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!