Background: The low number of patients suffering from any given rare diseases poses a difficult problem for medical research: With the exception of some specialized biobanks and disease registries, potential study participants' information are disjoint and distributed over many medical institutions. Whenever some of those facilities are in close proximity, a significant overlap of patients can reasonably be expected, further complicating statistical study feasibility assessments and data gathering. Due to the sensitive nature of medical records and identifying data, data transfer and joint computations are often forbidden by law or associated with prohibitive amounts of effort. To alleviate this problem and to support rare disease research, we developed the Mainzelliste Secure EpiLinker (MainSEL) record linkage framework, a secure Multi-Party Computation based application using trusted-third-party-less cryptographic protocols to perform privacy-preserving record linkage with high security guarantees. In this work, we extend MainSEL to allow the record linkage based calculation of the number of common patients between institutions. This allows privacy-preserving statistical feasibility estimations for further analyses and data consolidation. Additionally, we created easy to deploy software packages using microservice containerization and continuous deployment/continuous integration. We performed tests with medical researchers using MainSEL in real-world medical IT environments, using synthetic patient data.

Results: We show that MainSEL achieves practical runtimes, performing 10 000 comparisons in approximately 5 minutes. Our approach proved to be feasible in a wide range of network settings and use cases. The "lessons learned" from the real-world testing show the need to explicitly support and document the usage and deployment for both analysis pipeline integration and researcher driven ad-hoc analysis use cases, thus clarifying the wide applicability of our software. MainSEL is freely available under: https://github.com/medicalinformatics/MainSEL CONCLUSIONS: MainSEL performs well in real-world settings and is a useful tool not only for rare disease research, but medical research in general. It achieves practical runtimes, improved security guarantees compared to existing solutions, and is simple to deploy in strict clinical IT environments. Based on the "lessons learned" from the real-word testing, we hope to enable a wide range of medical researchers to meet their needs and requirements using modern privacy-preserving technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547637PMC
http://dx.doi.org/10.1186/s12967-022-03671-6DOI Listing

Publication Analysis

Top Keywords

record linkage
16
rare disease
12
linkage based
8
mainzelliste secure
8
secure multi-party
8
multi-party computation
8
security guarantees
8
medical researchers
8
achieves practical
8
practical runtimes
8

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

This study aimed to calculate Italy's first national maternal mortality ratio (MMR) through an innovative record-linkage approach within the enhanced Italian Obstetric Surveillance System (ItOSS). A record-linkage retrospective cohort study was conducted nationwide, encompassing all women aged 11-59 years with one or more hospitalizations related to pregnancy or pregnancy outcomes from 2011 to 2019. Maternal deaths were identified by integrating data from the Death Registry and national and regional Hospital Discharge Databases supported by the integration of findings from confidential enquiries conducted through active surveillance.

View Article and Find Full Text PDF

Objectives: Patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) face excess mortality compared with the general population. Mortality in clinical epidemiology research is often examined using death certificate diagnosis codes; however, the sensitivity of such codes in AAV is unknown.

Methods: We performed a retrospective cohort study using the Mass General Brigham AAV Cohort, including patients with AAV who died between 2002 and 2019.

View Article and Find Full Text PDF

Longitudinal associations between air pollution and incident dementia as mediated by MRI-measured brain volumes in the UK Biobank.

Environ Int

December 2024

MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, UK. Electronic address:

Background: Although there is increasing evidence that environmental exposures are associated with the risk of neurodegenerative conditions, there is still limited mechanistic evidence evaluating potential mediators in human populations.

Methods: UK Biobank is a large long-term study of 500,000 adults enrolled from 2006 to 2010 age 40-69 years. ICD-10 classified reports of dementia cases up to 2022 (Alzheimer's disease, vascular dementia, dementia in other classified diseases, and unspecified dementia) were identified from health record linkage.

View Article and Find Full Text PDF

Objective: The global concern regarding the health implications of night shift work has escalated. Nevertheless, variations exist in the observed association between night shift work and prostate cancer (PCa). This study aims to systematically explore the association between night shift work and the risk of PCa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!