AI Article Synopsis

  • The production of peste des petits ruminants (PPR) vaccines in Russia relies on two virus strains, "45G37/35-k" and "ARRIAH," which are of common origin.
  • A full genome analysis of the PPRV/45G37/35-k strain revealed it is related to the established vaccine strain Nigeria/75/1, but with 248 nucleotide differences, suggesting it is a distinct, unrecognized strain.
  • The safety and effectiveness of the Russian vaccine strains need to be thoroughly documented and submitted to the World Organization for Animal Health (WOAH) before they can be distributed widely.

Article Abstract

Production of peste des petits ruminants (PPR) vaccines in Russia is based on two attenuated virus strains ("45G37/35-k" and "ARRIAH") of common origin. Here, the identity of the strain PPRV/45G37/35-k was investigated using a full genome, Illumina deep sequencing approach. Phylogenomic analysis showed that PPRV/45G37/35-k belongs to the same lineage as the widely used PPRV vaccine strain Nigeria/75/1 (lineage II). However, 248 nucleotide differences separate the genomes of these vaccine strains, indicating that the PPRV vaccine strains produced in Russia are new strains not yet recognised by the World Organization for Animal Health (WOAH). Detailed information on the safety and efficacy of these vaccines should be provided to the WOAH before further national and international distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548208PMC
http://dx.doi.org/10.1186/s13567-022-01099-wDOI Listing

Publication Analysis

Top Keywords

peste des
8
des petits
8
petits ruminants
8
pprv vaccine
8
vaccine strains
8
genomic characterization
4
characterization peste
4
vaccine
4
ruminants vaccine
4
vaccine seed
4

Similar Publications

Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L).

View Article and Find Full Text PDF

Background: Peste des petits ruminants (PPR) is an acute or subacute, highly contagious, and economically important, transboundary disease of small ruminants caused by Peste des petits ruminants virus (PPRV).

Objectives: The objective of this study was to determine the seroconversion rate in PPR vaccinated flock of sheep (Sekela district) and the seroprevalence of PPRV in unvaccinated flocks of sheep and goats (Yilmanadensa district).

Methods: A cross-sectional study was conducted from January to March 2022 in two selected districts of West Gojjam zone, Ethiopia.

View Article and Find Full Text PDF

Rinderpest and peste des petits ruminants (PPR) are two closely related viral diseases caused by viruses belonging to the genus Morbillivirus and affecting ruminants. Both diseases are notifiable to the World Organisation for Animal Health (WOAH) due to their high contagiosity and economic importance. International collaboration and scientific developments have led to the eradication of rinderpest, which was celebrated in 2011, 250 years after the first veterinary school was created in Lyon.

View Article and Find Full Text PDF

Rinderpest virus and peste des petits ruminants (PPR) virus are highly pathogenic viruses causing disease primarily in cattle and small ruminants, respectively. Although the post-eradication process for rinderpest has been largely successful, gaps in preparedness for a future rinderpest reappearance remain, and the virus is still held in some facilities that have not been registered or inspected, posing a threat to the global community. The PPR Global Eradication Programme will need to overcome significant hurdles to reach a world free of the disease by 2030.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!