Objectives: Historical ecological records document the diversity and composition of communities decades or centuries ago. They can provide a valuable benchmark for comparisons with modern communities. Historical datasets on plant-animal interactions allow for modern comparisons that examine the stability of species and interaction networks over long periods of time and in response to anthropogenic change. Here we present a curated dataset of interactions between plants and insects in subarctic Finland, generated from digitizing a historical document from the late 19th century and updating the taxonomy using currently accepted nomenclature.
Data Description: The resulting dataset contains 654 records of plant-insect interactions observed during the years 1895-1900, and includes 498 unique interactions between 86 plant species and 173 insect taxa. Syrphidae, Apidae and Muscidae were the insect families involved in most interactions, and interactions were most observed with the plant species Angelica archangelica, Salix caprea, and Chaerophyllum prescottii. Interaction data are available as csv-file and provide a valuable resource on plant-insect interactions over 120 years ago in a high latitude ecosystem that is undergoing rapid climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548211 | PMC |
http://dx.doi.org/10.1186/s13104-022-06213-x | DOI Listing |
Biol Aujourdhui
January 2025
Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.
Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
Pollinators help maintain functional landscapes and are sensitive to floral nutritional quality. Both proteins and lipids influence pollinator foraging, but the role of individual biochemical components in pollen remains unclear. We conducted an experiment comprising common garden plots of six plant species (Asteraceae, Rosaceae, Onagraceae, Boraginaceae, and Plantaginaceae).
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.
The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.
View Article and Find Full Text PDFMol Hortic
January 2025
Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Volatile organic compounds (VOCs) play a key role in plant communication with other organisms in the natural environment. However, the regulatory role of the phytohormone ethylene in volatile production in plants remains unclear. In this study, we demonstrated that the application of an ethylene precursor and amplification of ethylene signaling make rice plants more attractive to brown planthopper (BPH) females for feeding and oviposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!