Background: Besides featured glucose consumption, recent studies reveal that cancer cells might prefer "addicting" specific energy substrates from the tumor microenvironment (TME); however, the underlying mechanisms remain unclear.

Methods: Fibroblast-specific long noncoding RNAs were screened using RNA-seq data of our NJLCC cohort, TCGA, and CCLE datasets. The expression and package of LINC01614 into exosomes were identified using flow cytometric sorting, fluorescence in situ hybridization (FISH), and quantitative reverse transcription polymerase chain reaction (RT-PCR). The transfer and functional role of LINC01614 in lung adenocarcinoma (LUAD) and CAFs were investigated using 4-thiouracil-labeled RNA transfer and gain- and loss-of-function approaches. RNA pull-down, RNA immunoprecipitation, dual-luciferase assay, gene expression microarray, and bioinformatics analysis were performed to investigate the underlying mechanisms involved.

Results: We demonstrate that cancer-associated fibroblasts (CAFs) in LUAD primarily enhance the glutamine metabolism of cancer cells. A CAF-specific long noncoding RNA, LINC01614, packaged by CAF-derived exosomes, mediates the enhancement of glutamine uptake in LUAD cells. Mechanistically, LINC01614 directly interacts with ANXA2 and p65 to facilitate the activation of NF-κB, which leads to the upregulation of the glutamine transporters SLC38A2 and SLC7A5 and eventually enhances the glutamine influx of cancer cells. Reciprocally, tumor-derived proinflammatory cytokines upregulate LINC01614 in CAFs, constituting a feedforward loop between CAFs and cancer cells. Blocking exosome-transmitted LINC01614 inhibits glutamine addiction and LUAD growth in vivo. Clinically, LINC01614 expression in CAFs is associated with the glutamine influx and poor prognosis of patients with LUAD.

Conclusion: Our study highlights the therapeutic potential of targeting a CAF-specific lncRNA to inhibit glutamine utilization and cancer progression in LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548164PMC
http://dx.doi.org/10.1186/s13045-022-01359-4DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
linc01614
8
glutamine
8
enhances glutamine
8
glutamine uptake
8
lung adenocarcinoma
8
underlying mechanisms
8
long noncoding
8
glutamine influx
8
cancer
5

Similar Publications

Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF

Co-blocking TIGIT and PVRIG using a novel bispecific antibody enhances anti-tumor immunity.

Mol Cancer Ther

January 2025

Jiangsu Hengrui Pharmaceutical Co. Ltd, Shanghai, China.

TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.

View Article and Find Full Text PDF

Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.

View Article and Find Full Text PDF

Extracellular vesicles-a new player in the development of urinary bladder cancer.

Ther Adv Med Oncol

January 2025

Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.

Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!