Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
TGF-β1 (transforming growth factor-beta1), a secreted polypeptide cytokine, stimulates ATF-3 (activating transcription factor-3) expression in a sustained and prolonged manner in human breast cancer cells (MDA-MB231), but not in normal human mammary epithelial cells (MCF-10A). Cyclin A (cell proliferation gene), Runx2 (metastasis gene), and MMP-13 (matrix metalloproteinase-13; invasive gene) were identified as ATF-3 target genes in these cells. Because ATF-3 has very few druggable sites, its direct targeting is difficult. Recent evidence has indicated that microRNAs (miRNAs) are key players in the post-transcriptional modulation of gene expression under several conditions. Bioinformatic analysis suggested a list of putative miRNAs that target ATF-3. Therefore, we hypothesized that TGF-β1 downregulates the miRNAs that target ATF-3, resulting in the activation of genes that participate in breast cancer progression and skeletal metastasis. Our findings indicate that TGF-β1 downregulated the expression of miR-4638-3p in MDA-MB231 cells. At the molecular level, forced expression of miR-4638-3p reduced the expression of ATF-3 and its downstream targets, Runx2 and MMP-13, in these cells. At the cellular level, overexpression of miR-4638-3p reduced proliferation, invasion, and migration, and induced G0/G1 cell cycle arrest and apoptosis in MDA-MB231 cells. Overall, this study highlights the possibility of utilizing miR-4638-3p as a therapeutic molecule to curb skeletal metastasis of breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.09.286 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!