Coastal areas are important interface environments between marine and terrestrial ecosystems and are also areas of high economic activity related, among others, to trade, fishing and tourism. The port areas of La Rochelle (France) are part of these areas with strong anthropic activities and are therefore subject to potential contamination, particularly with trace metals. Among the various sources of discharges, galvanic (or sacrificial) cathodic protection can be questioned. Indeed, few studies have been carried out on the potential impact of the degradation of sacrificial anodes in ports on the health of bivalves. A study was therefore carried out on the black scallop Mimachlamys varia in the commercial port and the marina of La Rochelle using the caging method. Several biomarkers of the health status of individuals were observed in the laboratory (SOD, GST, MDA, AChE, and LAC). Among the different results obtained over two exposure periods, it appears that the potential effects of sacrificial anodes, whether new or present on site for several years, are masked by meteorological conditions, as well as by harbor activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159244 | DOI Listing |
Polymers (Basel)
December 2024
Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
The synergistic effect of CNT and three-dimensional N-doped graphene foam (3DNG) on improving corrosion resistance of zinc-reinforced epoxy (ZRE) composite coatings was studied in this work. Although CNT itself was demonstrated to be effective to promote the anti-corrosion performance of the ZRE coating, the incorporation of additional 3DNG leads to further enhancement of its corrosion resistance under the synergistic effect of the hybrid carbon nanofillers with different dimensions. Both the content of the carbonaceous fillers and the ratio between them affected the performance of the coating.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
Silicon (Si) is regarded as a promising anode material owing to its high specific capacity and low lithiation potential. The large volume change and the pulverization of silicon during the lithiation/delithiation process hinder its direct energy storage application. This review focuses on the electrospun silicon/carbon (Si/C) nanofiber anode materials for lithium-ion batteries for long-term stable energy storage.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Marine Corrosion and Protection Team, School of Chemical Engineering and Technology (Zhuhai 519082), Sun Yat-sen University, China. Electronic address:
This study investigates the corrosion of 90/10 copper-nickel (Cu-Ni) alloy caused by sulfate-reducing bacteria (SRB) in the presence of aluminum anodes, with particular emphasis on the role of electron supply in microbial corrosion and the resulting local corrosion failures. The study reveals that the electron supply from the anode supports SRB growth on the Cu-Ni alloy through an "Electrons-siphoning" mechanism. However, the supply is insufficient to sustain the SRB population, resulting in ineffective cathodic protection (i = 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemistry, South China Normal University, Guangzhou 510006, China. Electronic address:
Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).
View Article and Find Full Text PDFNanoscale
December 2024
Key Laboratory of Advanced Energy Storage and Conversion of Wenzhou, Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
Lead oxides (PbO, 1 ≤ ≤ 2) are promising high-capacity and low-cost anodes for lithium ion batteries (LIBs). However, the huge lithiation-induced volume expansion of conventional large-sized PbO particles leads to severe electrode pulverization with poor cycling stability. Herein, a rare mixed-valence PbO with a unique hierarchical architecture of nanoparticle-assembled interconnected hollow spheres (denoted PbO NAHSs) is crafted by introducing polyvinylpyrrolidone (PVP) into the solution of generating β-PbO microspheres (MSs), which is exploited for the first time as a potential advanced anode material for LIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!