Photocatalytic decomposition of water for hydrogen production using semiconductor photocatalysts in visible light is considered one of the most promising environmentally friendly ways to produce hydrogen. In this work, the calcination method was adopted to prepare an efficient CuP/WSe/CNTs composite photocatalysts. CuP and carbon nanotubes (CNTs) were used as co-catalysts to reduce the composite rate of the photogenerated supports of the photocatalyst. The unique metallic properties of CuP as a transition metal phosphide makes it a cost-effective alternative to noble metal co-catalysts. CNTs can serve both as co-catalysts and as a suitable carrier to accelerate the transfer rate of photogenerated electrons. The experimental results showed that the CuP/WSe/CNTs composite photocatalyst exhibited stronger activities in photocatalytic hydrogen production than pure WSe. In particular, a higher quantum yield of 30.27% at the range 400-700 nm was achieved with a loading of 4% CNTs, a calcination temperature of 300 °C and a calcination time of 2.0 h. In contrast, the quantum yield of pure WSe was only 14.01%. The highest hydrogen production rate was 6.987 mL in 4.0 h, and the average hydrogen production rate was 712.985 μmol·hg, which was 2.39 times higher than that of pure WSe.The catalytic memory performance of the composite samples was also examined. The results indicated that the best catalytic memory performance was achieved under the pre-illumination condition of 5.0 h. The amount of hydrogen produced under darkness for 4.0 h was up to 4.934 mL and the average hydrogen production rate was 503.454 μmol·hg. The average hydrogen production rate was 1.69 times higher than the average hydrogen production rate of pure WSe under light conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.09.135 | DOI Listing |
JACS Au
December 2024
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, 201804, Shanghai, China.
For the aim of achieving the carbon-free energy scenario, green hydrogen (H) with non-CO emission and high energy density is regarded as a potential alternative to traditional fossil fuels. Over the last decades, significant breakthroughs have been realized on the alkaline hydrogen evolution reaction (HER), which is a fundamental advancement and efficient process to generate high-purity H in the laboratory. Based on this, the development of the practical industry-oriented anion exchange membrane water electrolyzer (AEMWE) is on the rise, showing competitiveness with the incumbent megawatt-scale H production technologies.
View Article and Find Full Text PDFACS Appl Nano Mater
January 2024
Department of Chemistry, University of Central Florida, Orlando, Florida 32816 (USA).
Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Electrochemical conversion of CO to hydrocarbons is a promising approach to carbon neutrality and energy storage. The formation of reaction intermediates involves crucial steps of proton transfer, making it essential to understand the role of protons in the electrochemical process to control the product selectivity and elucidate the underlying catalytic reaction mechanism of the CO electrochemical reduction (CORR). In this work, we proposed a strategy to regulate product selectivities by tuning local proton transport rates through a surface resin layer over cuprous oxides.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!