A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxia-induced reprogrammed myoblasts enhance the formation of neuromuscular junctions: A pioneer study. | LitMetric

We previously reported that muscle cells could reprogram into progenitors after traumatic injuries. These injury-induced muscle stem cells (iMuSCs) have increased migration and differentiation capacities, including neuronal differentiation. Recent studies in our laboratory suggest that the hypoxia-induced by tissue injury plays an essential role in the reprogramming process of muscle cells. We hypothesize that muscle cells reprogrammed with hypoxia have increased neuronal differentiation potentials and the neuronal differentiation extends into the formation of neuromuscular junction (NMJ)-like structures. In this study, C2C12 myoblasts were cultured under hypoxic conditions and subsequently in neural differentiation media to generate neurospheres, and then with muscle differentiation media to induce NMJ-like structure formation. Hypoxia-induced muscle cells also produced more robust NMJs compared to controls after intramuscular cell transplantation. Our results suggest hypoxia plays a role in the reprogramming of muscle stem cells, which may have the potential to form neuromuscular junctions and ultimately contribute to functional muscle healing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.30334DOI Listing

Publication Analysis

Top Keywords

muscle cells
16
neuronal differentiation
12
formation neuromuscular
8
neuromuscular junctions
8
muscle
8
muscle stem
8
stem cells
8
role reprogramming
8
differentiation media
8
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!