Recent advances in enzymatic biosensors for point-of-care detection of biomolecules.

Biotechnol Bioeng

Material Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India.

Published: December 2022

Late state-of-the-art analytical methodologies in chromatography, spectroscopy, and electroanalysis have been developed to meet the challenges of changing environmental and health issues. The modern trends in developing new protocols emphasize economic, portable, nano, or even smaller sample sizes and less time-consuming processes. This has led to the development of technology-based biosensors which meet most of the above requirements. The lab-on-chip technology exploiting enzyme-based biosensors has made the analytical processes very efficient, accurate, affordable, and requiring nano-scale sample sizes. In this review, an attempt is being made to review the literature based on state-of-the-art technology of enzyme-based biosensors for the detection of biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28251DOI Listing

Publication Analysis

Top Keywords

detection biomolecules
8
sample sizes
8
enzyme-based biosensors
8
advances enzymatic
4
biosensors
4
enzymatic biosensors
4
biosensors point-of-care
4
point-of-care detection
4
biomolecules late
4
late state-of-the-art
4

Similar Publications

Cellulosic nanomaterials have significantly promoted the development of sensing devices, drug delivery, and bioreactor processes. Their synthetic flexibility makes them a prominent choice for immobilizing biomolecules or cells. In this work, we developed a practical and user-friendly approach to accessing cellulose nanoparticles (CNPs).

View Article and Find Full Text PDF

Advancing foodborne pathogen detection: a review of traditional and innovative optical and electrochemical biosensing approaches.

Mikrochim Acta

January 2025

Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.

Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests.

View Article and Find Full Text PDF

Cerebral small vessel disease (CSVD) is a common factor in age-related diseases such as stroke and dementia, and about half of dementia patients worldwide are caused by CSVD. CSVD-related cognitive impairment (CSVD-CI) affects more and more elderly people, resulting in economic losses and burdens on families and society. In recent years, circulating biomarkers have made breakthroughs and played an increasingly important role in the diagnosis, progression, and prognosis of CSVD-associated cognitive impairment, and are expected to be applied to the early clinical detection, diagnosis, and treatment of patients with cerebral small vessel disease.

View Article and Find Full Text PDF

An erbium-doped fiber ring laser based on a single-mode fiber-no-core fiber-single-mode fiber (SMF-NCF-SMF) structure was constructed and experimentally demonstrated for label-free DNA hybridization measurement. The SMF-NCF-SMF structure acts as a sensing element and a filter to select the laser wavelength. The proposed fiber ring laser sensor exhibits a high optical signal-to-noise ratio (SNR, >50 dB) and narrow full width at half maximum (FWHM, <0.

View Article and Find Full Text PDF

Piezoelectric Vitamin-Based Self-Assemblies for Energy Generation.

Adv Mater

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.

Structural diversity of biomolecules leads to various supramolecular organizations and asymmetric architectures of self-assemblies with significant piezoelectric response. However, the piezoelectricity of biomolecular self-assemblies has not been fully explored and the relationship between supramolecular structures and piezoelectricity remains poorly understood, which hinders the development of piezoelectric biomaterials. Herein, for the first time, the piezoelectricity of vitamin-based self-assemblies for power generation is systematically explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!