Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Bone remodeling is tightly regulated through bone resorption and bone formation; imbalances in bone remodeling can cause various pathological conditions such as osteoporosis. Antiresorptive agents commonly used for treating osteoporosis do not substantially reverse osteoporotic bone loss.
Methods: We evaluated the effects of the RVYFFKGKQYWE motif (residues 270-281; VnP-16) of human vitronectin on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and osteoclastogenesis of bone marrow-derived macrophages. The effects of VnP-16 were also assessed in a mouse model of estrogen deficiency-induced osteoporosis (ovariectomized female C57BL/6 mice). To assay whether VnP-16 can reverse ovariectomy-induced bone loss, synthetic peptides or vehicle were subcutaneously injected into ovariectomized mice once a week for 4 weeks (n = 10/group). To evaluate the bone restorative effects of VnP-16, in-vivo micro-computed tomography analysis and histological staining were performed.
Results: VnP-16 induced osteogenic differentiation of hMSCs and inhibited the RANKL-RANK-TRAF6 axis in the osteoclastogenesis signaling pathway. Furthermore, systemic administration of VnP-16 reversed ovariectomy-induced bone loss in the femoral neck, distal femur and lumbar spine by increasing osteoblast differentiation and promoting bone formation, and concomitantly decreasing osteoclastogenesis and inhibiting bone resorption. The bone restorative effect of VnP-16 was observed one week after subcutaneous administration, and although the timing of the effect differed according to bone location, it persisted for at least 3 weeks.
Conclusion: Our findings suggest that VnP-16 is a potential therapeutic agent for treating osteoporosis that mediates its effects through dual regulation of bone remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679078 | PMC |
http://dx.doi.org/10.1007/s13770-022-00486-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!