Sensory abnormalities are characteristic of autism and schizophrenia. In autism, greater trial-to-trial variability (TTV) in sensory neural responses suggest that the system is more unstable. However, these findings have only been identified in the amplitude and not in the timing of neural responses, and have not been fully explored in schizophrenia. TTV in event-related potential amplitudes and inter-trial coherence (ITC) were assessed in the auditory mismatch negativity (MMN) in autism, schizophrenia, and controls. MMN was largest in autism and smallest in schizophrenia, and TTV was greater in autism and schizophrenia compared to controls. There were no differences in ITC. Greater TTV appears to be characteristic of both autism and schizophrenia, implicating several neural mechanisms that could underlie sensory instability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079782 | PMC |
http://dx.doi.org/10.1007/s10803-022-05771-0 | DOI Listing |
BJPsych Open
January 2025
Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
Background: Developmental regression in children, in the absence of neurological damage or trauma, presents a significant diagnostic challenge. The complexity is further compounded when it is associated with psychotic symptoms.
Method: We discuss a case series of ten children aged 6-10 years, with neurotypical development, presenting with late-onset developmental regression (>6 years of age), their clinical course and outcome at 1 year.
Mol Autism
January 2025
Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
Background: Significant progress has been made in elucidating the genetic underpinnings of Autism Spectrum Disorder (ASD). However, there are still significant gaps in our understanding of the link between genomics, neurobiology and clinical phenotype in scientific discovery. New models are therefore needed to address these gaps.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.
Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.
Transl Psychiatry
January 2025
Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
Despite observational studies linking brain iron levels to psychiatric disorders, the exact causal relationship remains poorly understood. This study aims to examine the relationship between iron levels in specific subcortical brain regions and the risk of psychiatric disorders. Utilizing two-sample Mendelian randomization (MR) analysis, this study investigates the causal associations between iron level changes in 16 subcortical nuclei and eight major psychiatric disorders, including schizophrenia (SCZ), major depressive disorder (MDD), autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, bipolar disorder, anxiety disorders, obsessive-compulsive disorder, and insomnia.
View Article and Find Full Text PDFRev Neurosci
January 2025
Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran.
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!