Despite many studies have revealed that developing honey bee (Apis mellifera) larvae are posting a high risk on exposure to insecticides, the toxicology information on bee larvae remain limited. The present study demonstrated the first assessment of the effects of no observed adverse effect concentration (NOAEC) of carbaryl (CR) and acetamiprid (ACE) on transcriptome and metabolome in honeybee larvae reared in vitro. Chronic exposure to carbaryl caused transcriptional disorders associated with oxidative stress. In addition, a series of metabolic homeostasis were disrupted by carbaryl stress, such amino acid metabolism, purine and pyrimidine metabolism and flavone and flavonol biosynthesis. The activities of enzymic biomarkers including GST, P450, CAT, AChE and SOD were not influenced by ACE stress, while the CR exposure slightly decreased the activity of CAT and SOD. Our results clearly show that ACE and CR display different potential to modulate transcriptome and metabolome associated with their different toxicity against bee larvae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543932PMC
http://dx.doi.org/10.1038/s41598-022-21403-0DOI Listing

Publication Analysis

Top Keywords

carbaryl acetamiprid
8
apis mellifera
8
mellifera larvae
8
bee larvae
8
transcriptome metabolome
8
larvae
5
combined transcriptome
4
transcriptome metabolite
4
metabolite profiling
4
profiling analyses
4

Similar Publications

Discovery of multiple bee-hazardous pesticides in ornamental plants via the Bee-Plex multi-target microsphere screening method.

J Hazard Mater

November 2024

Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands. Electronic address:

Exposure to pesticides is one of the main drivers of global bee decline. However, the occurrence of pesticides in bee-attracting crops remains underexposed due to the lack of efficient on-site screening approaches for multi-analyte monitoring. Utilizing color-encoded superparamagnetic microspheres, we constructed a portable 8-plex indirect competitive microsphere-based immunoassay for the simultaneous determination of multiple bee-hazardous residues (Bee-Plex).

View Article and Find Full Text PDF

In 2020, the invasive (Karny) was first detected in Florida, United States. In response to the implemented regulatory restrictions, we conducted laboratory experiments under containment conditions. Thrips larvae and adults were exposed to 32 products (conventional and biorational insecticides) either directly or indirectly.

View Article and Find Full Text PDF

Recently, pesticides have been suggested to be one of the factors responsible for the large-scale decline in honey bee populations, including colony collapse disorder. The identification of the genes that respond to pesticide exposure based on their expression is essential for understanding the xenobiotic detoxification metabolism in honey bees. For the accurate determination of target gene expression by quantitative real-time PCR, the expression stability of reference genes should be validated in honey bees exposed to various pesticides.

View Article and Find Full Text PDF

Combined transcriptome and metabolite profiling analyses provide insights into the chronic toxicity of carbaryl and acetamiprid to Apis mellifera larvae.

Sci Rep

October 2022

Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.

Despite many studies have revealed that developing honey bee (Apis mellifera) larvae are posting a high risk on exposure to insecticides, the toxicology information on bee larvae remain limited. The present study demonstrated the first assessment of the effects of no observed adverse effect concentration (NOAEC) of carbaryl (CR) and acetamiprid (ACE) on transcriptome and metabolome in honeybee larvae reared in vitro. Chronic exposure to carbaryl caused transcriptional disorders associated with oxidative stress.

View Article and Find Full Text PDF

A green photocatalytic-biosensor for colorimetric detection of pesticide (carbaryl) based on inhibition of acetylcholinesterase.

Talanta

August 2022

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 410005, PR China.

Carbaryl is a widely-used carbamate pesticide and the detection of its residues in environmental, food and clinical samples is of great importance. In this sturdy, we developed a green photocatalytic-biosensor based on double strand DNA-SYBR green I complex for sensitively colorimetric detection of carbaryl. This green photocatalytic-biosensor can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into blue ox-TMB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!