Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, fused filament fabrication (FFF) printing parameters were optimized to improve the surface quality and reduce the printing time of Acrylonitrile Butadiene Styrene (ABS) polymer using the Analysis of Variance (ANOVA), it is a statistical analysis tool. A multi-objective optimization technique was employed to predict the optimum process parameter values using particle swarm optimization (PSO) and response surface methodology (RSM) techniques. Printing time and surface roughness were analyzed as a function of layer thickness, printing speed and nozzle temperature. A central composite design was preferred by employing the RSM method, and experiments were carried out as per the design of experiments (DoE). To understand the relationship between the identified input parameters and the output responses, several mathematical models were developed. After validating the accuracy of the developed regression model, these models were then coupled with PSO and RSM to predict the optimum parameter values. Moreover, the weighted aggregated sum product assessment (WASPAS) ranking method was employed to compare the RSM and PSO to identify the best optimization technique. WASPAS ranking method shows PSO has finer optimal values [printing speed of 125.6 mm/sec, nozzle temperature of 221 °C and layer thickness of 0.29 mm] than the RSM method. The optimum values were compared with the experimental results. Predicted parameter values through the PSO method showed high surface quality for the type of the surfaces, i.e., the surface roughness value of flat upper and down surfaces is approximately 3.92 µm, and this value for the other surfaces is lower, which is approximately 1.78 µm, at a minimum printing time of 24 min.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546872 | PMC |
http://dx.doi.org/10.1038/s41598-022-20782-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!