Low-dose ungated CT attenuation correction (CTAC) scans are commonly obtained with SPECT/CT myocardial perfusion imaging. Despite the characteristically low image quality of CTAC, deep learning (DL) can potentially quantify coronary artery calcium (CAC) from these scans in an automatic manner. We evaluated CAC quantification derived with a DL model, including correlation with expert annotations and associations with major adverse cardiovascular events (MACE). We trained a convolutional long short-term memory DL model to automatically quantify CAC on CTAC scans using 6,608 studies (2 centers) and evaluated the model in an external cohort of patients without known coronary artery disease ( = 2,271) obtained in a separate center. We assessed agreement between DL and expert annotated CAC scores. We also assessed associations between MACE (death, revascularization, myocardial infarction, or unstable angina) and CAC categories (0, 1-100, 101-400, or >400) for scores manually derived by experienced readers and scores obtained fully automatically by DL using multivariable Cox models (adjusted for age, sex, past medical history, perfusion, and ejection fraction) and net reclassification index. In the external testing population, DL CAC was 0 in 908 patients (40.0%), 1-100 in 596 (26.2%), 100-400 in 354 (15.6%), and >400 in 413 (18.2%). Agreement in CAC category by DL CAC and expert annotation was excellent (linear weighted κ, 0.80), but DL CAC was obtained automatically in less than 2 s compared with about 2.5 min for expert CAC. DL CAC category was an independent risk factor for MACE with hazard ratios in comparison to a CAC of zero: CAC of 1-100 (2.20; 95% CI, 1.54-3.14; < 0.001), CAC of 101-400 (4.58; 95% CI, 3.23-6.48; < 0.001), and CAC of more than 400 (5.92; 95% CI, 4.27-8.22; < 0.001). Overall, the net reclassification index was 0.494 for DL CAC, which was similar to expert annotated CAC (0.503). DL CAC from SPECT/CT attenuation maps agrees well with expert CAC annotations and provides a similar risk stratification but can be obtained automatically. DL CAC scores improved classification of a significant proportion of patients as compared with SPECT myocardial perfusion alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071789PMC
http://dx.doi.org/10.2967/jnumed.122.264423DOI Listing

Publication Analysis

Top Keywords

cac
20
coronary artery
12
deep learning
8
artery calcium
8
spect/ct attenuation
8
attenuation maps
8
major adverse
8
ctac scans
8
myocardial perfusion
8
expert annotated
8

Similar Publications

Breast arterial calcification (BAC) is a common benign finding on a screening mammogram. Additionally, BAC is a type of medial calcification known as Mönckeberg medial calcific sclerosis, which differs from the intimal calcification seen in patients with coronary artery disease (CAD). Recently, BAC has appeared as a new cardiovascular risk stratification method.

View Article and Find Full Text PDF

Background: Vascular calcification is common and progressive in patients with chronic kidney disease. However, the risk factors associated with the progression of vascular calcification in patients receiving maintenance dialysis have not been fully elucidated. Here, we aimed to evaluate vascular calcification and identify the factors associated with its progression in patients receiving maintenance hemodialysis.

View Article and Find Full Text PDF

Western Trauma Association critical decisions in trauma: Damage-control resuscitation.

J Trauma Acute Care Surg

February 2025

From the Department of Surgery, Division of Acute Care Surgery, University of Florida College of Medicine (C.A.C.), Gainesville, Florida; Methodist Dallas Medical Center (M.L.), Dallas, Texas; Department of Surgery, Loma Linda University School of Medicine (R.C.), Loma Linda, California; Department of Surgery, Division of Trauma, Acute Care & Critical Care Surgery, Tulane University School of Medicine (J.C.D.), New Orleans, Louisiana; Department of Surgery, Division of Vascular Surgery, University of Maryland School of Medicine (C.F.), Baltimore, Maryland; University of Kansas Medical Center (J.H.), Kansas City, Kansas; Department of Surgery, Division of Emergency General Surgery and Acute Care Surgery, University of Alabama at Birmingham (J.B.H.), Birmingham, Alabama; Department of Surgery, Division of Trauma and Acute Care Surgery, University of Alabama (J.B.H.), Bethesda, Maryland; Department of Surgery, Division of Trauma, Surgical Critical Care and Acute Care Surgery, University of Arizona College of Medicine-Phoenix (N.K.), Phoenix, Arizona; Division of Acute Care Surgery, Department of Surgery (M.J.M., M.S.), Los Angeles General Medical Center, Los Angeles, California; Division of Vascular Surgery and Endovascular Therapy (G.A.M.), Keck Medical Center of USC, Los Angeles, California; Department of Surgery, Division of Acute Care Surgery (L.J.M.), The University of Texas McGovern Medical School-Houston Red Duke Trauma Institute, Memorial Hermann Hospital, Houston, Texas; Department of Surgery, Division of General and Acute Care Surgery, Medical University of South Carolina (A.R.P.), North Charleston, South Carolina; Department of Surgery, Section of General Surgery, Trauma and Surgical Critical Care, Yale School of Medicine (K.M.S.), New Haven, Connecticut; Department of Surgery, Division of Trauma and Acute Care Surgery, UCSF Department of Surgery at Zuckerberg San Francisco General Hospital (R.T.), University of California, San Francisco, San Francisco, California; Department of Surgery, Division of Trauma and Acute Care Surgery, St. Joseph's Hospital and Medical Center (J.A.W.), Phoenix, Arizona; and Program in Trauma (D.M.S), University of Maryland School of Medicine, Baltimore, Maryland.

View Article and Find Full Text PDF

: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. : Use network pharmacology to identify targets and pathways of GQD.

View Article and Find Full Text PDF

The Effect of Alumina-Rich Spinel Exsolution on the Mechanical Property of Calcium Aluminate Cement-Bonded Corundum Castables.

Materials (Basel)

January 2025

Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

This study investigates the effect of the exsolution behavior of alumina-rich spinel on the formation and distribution of CA (CaAlO) in corundum castables bonded with calcium aluminate cement. In this study, alumina-rich spinel is substituted for tabular corundum in the same proportions and grain size. The matrices after curing were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!