Background: We attempted to explore the common and distinct long- and short-range functional connectivity (FC) patterns of melancholic and non-melancholic major depressive disorder (MDD) and their associations with clinical characteristics.
Methods: Fifty-nine patients with first-episode drug-naïve MDD, including 31 patients with melancholic features and 28 patients with non-melancholic features, underwent resting-state functional magnetic resonance imaging (fMRI) scanning to examine long- and short-range FC. Thirty-two healthy volunteers were recruited as controls. The support vector machines (SVM) was applied to distinguish the melancholic patients from the non-melancholic patients by using the FC of abnormal brain regions.
Results: Compared to healthy volunteers, patients with MDD showed increased long-range positive FC (lpFC) in the right insula/inferior frontal gyrus and left insula. Relative to non-melancholic patients, melancholic patients displayed decreased lpFC in the right lingual gyrus, decreased short-range positive FC (spFC) in the right middle temporal gyrus and right superior parietal lobule, increased lpFC in the left inferior parietal lobule, and increased spFC in the left middle occipital gyrus/inferior occipital gyrus, left cerebellum VII/IX, and bilateral cerebellum CrusII. Increased lpFC in the left inferior parietal lobule in melancholic patients was correlated with the TEPS abstract anticipatory scores. SVM results showed that FCs of five combinations within different brain regions could distinguish melancholic patients from non-melancholic patients.
Conclusions: FC abnormalities in the default mode network and parietal-occipital brain regions may underlie the neurobiology of melancholic MDD. An increased lpFC in the left inferior parietal lobule correlated with anhedonia may be a distinctive neurobiological feature of melancholic MDD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2022.09.161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!