. Deep learning (DL) models for fluence map prediction (FMP) have great potential to reduce treatment planning time in intensity-modulated radiation therapy (IMRT) by avoiding the lengthy inverse optimization process. This study aims to improve the rigor of input feature design in a DL-FMP model by examining how different designs of input features influence model prediction performance.. This study included 231 head-and-neck intensity-modulated radiation therapy patients. Three input feature designs were investigated. The first design (D1) assumed that information of all critical structures from all beam angles should be combined to predict fluence maps. The second design (D2) assumed that local anatomical information was sufficient for predicting radiation intensity of a beamlet at a respective beam angle. The third design (D3) assumed the need for both local anatomical information and inter-beam modulation to predict radiation intensity values of the beamlets that intersect at a voxel. For each input design, we tailored the DL model accordingly. All models were trained using the same set of ground truth plans (GT plans). The plans generated by DL models (DL plans) were analyzed using key dose-volume metrics. One-way ANOVA with multiple comparisons correction (Bonferroni method) was performed (significance level = 0.05).. For PTV-related metrics, all DL plans had significantly higher maximum dose ( < 0.001), conformity index ( < 0.001), and heterogeneity index ( < 0.001) compared to GT plans, with D2 being the worst performer. Meanwhile, except for cord+5 mm ( < 0.001), DL plans of all designs resulted in OAR dose metrics that are comparable to those of GT plans.. Local anatomical information contains most of the information that DL models need to predict fluence maps for clinically acceptable OAR sparing. Input features from beam angles are needed to achieve the best PTV coverage. These results provide valuable insights for further improvement of DL-FMP models and DL models in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac9882 | DOI Listing |
BMC Cancer
December 2024
Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.
Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain cancer in humans. The median survival time of GBM patients is only 12-15 months, making it the most lethal type of brain tumor.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Department of Electrical Engineering, Assam Engineering College, Assam, India.
Radiomics is a method that extracts many features from medical images using various algorithms. Medical nomograms are graphical representations of statistical predictive models that produce a likelihood of a clinical event for a specific individual based on biological and clinical data. The radiomic nomogram was first introduced in 2016 to study the integration of specific radiomic characteristics with clinically significant risk factors for patients with colorectal cancer lymph node metastases.
View Article and Find Full Text PDFSci Rep
December 2024
Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.
Coronary artery disease (CAD) is the main cause of death. It is a complex heart disease that is linked with many risk factors and a variety of symptoms. In the past few years, CAD has experienced a remarkable growth.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Science Department, Faculty of Computers and Information, South Valley University, Qena, 83523, Egypt.
Enhanced technologies of the future are gradually improving the digital landscape. Internet of Things (IoT) technology is an advanced technique that is quickly increasing owing to the development of a network of organized online devices. In today's digital era, the IoT is considered one of the most robust technologies.
View Article and Find Full Text PDFSci Rep
December 2024
School of Construction Machinery, Shandong Jiaotong University, Jinan, 250023, China.
Injection molded parts are increasingly utilized across various industries due to their cost-effectiveness, lightweight nature, and durability. However, traditional defect detection methods for these parts often rely on manual visual inspection, which is inefficient, expensive, and prone to errors. To enhance the accuracy of defect detection in injection molded parts, a new method called MRB-YOLO, based on the YOLOv8 model, has been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!