Accidental releases of highly saline produced water (PW) to land can impact soil quality. The release of associated salts can clog soil pores, disperse soil clays, and inhibit plants and other soil biota. This study explores a novel remediation technique using ferrocyanide to enhance the evaporative flux of soil porewater to transport dissolved salts to the soil surface, where crystallization then occurs. The addition of ferrocyanide modifies crystal growth that enhances salt transport, allowing salt efflorescence on the soil surface and physical removal. Release sites were simulated through beaker sand column experiments using two PWs collected from the Permian Basin. PW composition altered efflorescence, with up to ten times as much ferrocyanide required in PWs than comparable concentrations of pure NaCl solutions. The addition of EDTA reduced dissolved cation competition for the ferrocyanide ion, improving PW salt recovery at the soil surface. The speciation model, PHREEQC, was used to predict the onset of salt precipitation as a function of evaporative water loss and model the effect of aqueous ferrocyanide and EDTA speciation on efflorescence. The results highlight the utility of predictive modeling for optimizing additive dosages for a given release of PW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130028DOI Listing

Publication Analysis

Top Keywords

soil surface
12
evaporative flux
8
produced water
8
soil
8
ferrocyanide
6
ferrocyanide enhanced
4
enhanced evaporative
4
flux remediate
4
remediate soils
4
soils contaminated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!