A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(II) adsorption. | LitMetric

Using filamentous fungi to capture unicellular microalgae is an effective way for microalgae recovery in water treatment. Here, fungi Aspergillus flavus ZJ-1 and microalgae Chlorella vulgaris WZ-1 isolated from a copper tailings pond were used to study the capture effect of ZJ-1 on WZ-1. The highest capture efficiency (97.85%) was obtained within 6 h under the optimized conditions of 30 °C, 150 rpm, fungi-algae biomass ratio of 2.24:1, and initial pH of 9.24 in microalgae medium. The formed fungi-algae pellets (FAPs) were further used to remove Cu(II) from aqueous solution. Results showed that the FAPs formed at different capture times all adsorbed Cu(II) well, and the PAFs formed within 2 h (PAFs) exhibited the highest Cu(II) adsorption capacity (80.42 mg·g). SEM images showed that Cu(II) caused a change in the internal structure of PAFs from loose to compact, the mycelium shrunk, and the microalgal cells were concave. Cu(II) adsorption by PAFs was well conformed to the pseudo-second-order kinetics and the Langmuir isotherm (123.61 mg·g of theoretically maximum adsorption capacity). This work opens a way for applying FAPs in the remediation of heavy metal-contaminated wastewater, and the metal adsorption effect was determined by the capture amount of microalgae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130105DOI Listing

Publication Analysis

Top Keywords

cuii adsorption
12
filamentous fungi
8
fungi aspergillus
8
aspergillus flavus
8
flavus zj-1
8
zj-1 microalgae
8
microalgae chlorella
8
chlorella vulgaris
8
vulgaris wz-1
8
fungi-algae pellets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!