A systematic review of the advancement on colorimetric nanobiosensors for SARS-CoV-2 detection.

J Pharm Biomed Anal

Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil; Post-Graduation Program of Chemistry (PGQu), Institute of chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro, RJ, Brazil. Electronic address:

Published: January 2023

The current pandemic of the acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2) killed about 6.4 million and infected more than 600 million individuals by august of 2022, and researchers worldwide are searching for fast and selective approaches for this virus detection. Colorimetric biosensors are an excellent alternative because they are sensitive, simple, fast, and low-cost for rapid detection of SARS-CoV-2 compared to standard Enzyme-linked immunosorbent assay (ELISA) and Polymerase Chain Reaction (PCR) techniques. This study systematically searched and reviewed literature data related to colorimetric biosensors in detecting SARS-CoV-2 viruses, recovered from the Scopus (n = 16), Web of Science (n = 19), PubMed (n = 19), and Science Direct (n = 17) databases totalizing n = 71 articles. Data were analyzed for the type of nanomaterial, biorecognition material at the detection limit (LOD), and devices designed for diagnostics. The most applied nanomaterial were gold nanoparticles, in their original form and hybrid in quantum dots and core-shell. In addition, we show high specificity in point-of-care (POC) diagnostic devices as a faster and cheaper alternative for clinical diagnosis. Finally, the highlights of the colorimetric biosensor developed for diagnostic devices applied in swabs, surgical masks, and lateral flow immunoassays were presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523903PMC
http://dx.doi.org/10.1016/j.jpba.2022.115087DOI Listing

Publication Analysis

Top Keywords

colorimetric biosensors
8
diagnostic devices
8
systematic review
4
review advancement
4
colorimetric
4
advancement colorimetric
4
colorimetric nanobiosensors
4
sars-cov-2
4
nanobiosensors sars-cov-2
4
detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!