Particle size plays an important role in determining the behaviour, fate and effects of microplastics (MPs), yet little is known about MPs <300 μm in aquatic environments. Therefore, we performed the first assessment of MPs in marine surface waters around the Whitsunday Islands region of the Great Barrier Reef Marine Park, Australia, to test for the presence of small MPs (50-300 μm) in-situ. Using a modified manta net, we demonstrate that MPs were present in all marine surface water samples, with a mean sea surface concentration of 0.23 ± 0.03 particles m. Microplastics were mainly blue, clear and black fibres and fragments, consisting of polyethylene terephthalate, high-density polyethylene and polypropylene plastic polymers. Tourism and marine recreation were considered the major contributing sources of MPs to surface waters around the Whitsunday Islands. Between 10 and 124 times the number of MPs exist in the 50 μm-300 μm size class, compared with the 1 mm-5 mm size range. This finding indicates that the global abundance of small MPs in marine surface waters is grossly underestimated and warrants further investigation. Research into the occurrence, characteristics and environmental fate of MPs <300 μm is needed to improve our understanding of the cumulative threats facing valuable ecosystems due to this smaller, potentially more hazardous size class.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2022.114179DOI Listing

Publication Analysis

Top Keywords

small big
4
big problem?
4
problem? small
4
small microplastics
4
small
2
problem?
1
microplastics
1

Similar Publications

Background: The diagnosis of depression or anxiety treated by SSRIs has become relatively common in women of childbearing age. However, the impact of gestational SSRI treatment on newborn thyroid function is lacking. We explored the impact of gestational SSRI treatment on newborn thyroid function as measured by the National Newborn Screening (NBS) Program and identified contributory factors.

View Article and Find Full Text PDF

Haemodynamic profiling: when AI tells us what we already know.

Br J Anaesth

February 2025

Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy.

Machine learning (ML) algorithms hold significant potential for extracting valuable clinical information from big data, surpassing the processing capabilities of the human brain. However, it would be naïve to believe that ML algorithms can consistently transform data into actionable insights. Clinical studies suggest that in some instances, they tell clinicians what they already know or can plainly see.

View Article and Find Full Text PDF

Fragment-Based Drug Discovery: Small Fragments, Big Impact - Success Stories of Approved Oncology Therapeutics.

Bioorg Chem

January 2025

Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Academy of Higher Education, Manipal, Karnataka 576104, India.

Fragment-Based Drug Discovery (FBDD) has revolutionized drug discovery by overcoming the challenges of traditional methods like combinatorial chemistry and high-throughput screening (HTS). Leveraging small, low-molecular-weight fragments, FBDD achieves higher hit rates, reduced screening costs, and faster development timelines for clinically relevant drug candidates. This review explores FBDD's core principles, innovative methodologies, and its success in targeting diverse protein classes, including previously "undruggable" targets.

View Article and Find Full Text PDF

Multi-group structure analysis and molecular docking of aptamers and small molecules: A case study of chloramphenicol.

Biochem Biophys Res Commun

January 2025

College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China. Electronic address:

Aptamers, a kind of short nucleotide sequences with high specificity and affinity with targets, have attracted extensive attention in recent years. Molecular docking method (MDM) is the most common method to explore the binding mode and recognition mechanism of aptamers and small molecules, which generally use the target to dock with the highest scoring tertiary structural model of the aptamer, and the highest scoring result is used as the predicted model. However, this prediction results may miss out the true interaction pattern due to the fact that aptamers are not completely rigid and the natural aptamers conformations are not in a single state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!