The concept of bioisosterism and the implementation of bioisosteric replacement is fundamental to medicinal chemistry. The exploration of bioisosteres is often used to probe key structural features of candidate pharmacophores and enhance pharmacokinetic properties. As the understanding of bioisosterism has evolved, capabilities to undertake more ambitious bioisosteric replacements have emerged. Scaffold hopping is a broadly used term in the literature referring to a variety of different bioisosteric replacement strategies, ranging from simple heterocyclic replacements to topological structural overhauls. In this work, we have highlighted recent applications of scaffold hopping in the central nervous system drug discovery space. While we have highlighted the benefits of using scaffold hopping approaches in central nervous system drug discovery, these are also widely applicable to other medicinal chemistry fields. We also recommend a shift toward the use of more refined and meaningful terminology within the realm of scaffold hopping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c00969 | DOI Listing |
J Med Chem
January 2025
Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Computer Science, School of Computing, Institute of Science Tokyo, Yokohama 226-8501, Japan.
Accurate prediction of the difference in binding free energy between compounds is crucial for reducing the high costs associated with drug discovery. Relative binding free energy perturbation (RBFEP) calculations are effective for small structural changes; however, large topological changes pose significant challenges for calculations, leading to high errors and difficulties in convergence. To address such issues, we propose a new approach─PairMap─that focuses on introducing appropriate intermediates for complex transformations between two input compounds.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Organ fibrosis, such as lung fibrosis and liver fibrosis, is a progressive and fatal disease. Fibroblast growth factor receptors (FGFRs) play an important role in the development and progression of fibrosis. Through scaffold hopping, bioisosteric replacement design, and structure-activity relationship optimization, we developed a series of highly potent FGFRs inhibitors, and the indazole-containing candidate compound A16 showed potent kinase activity comparable to that of AZD4547.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.
View Article and Find Full Text PDFScience
January 2025
Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, USA.
Given the prevalence of nitrogen-containing heterocycles in commercial drugs, selectively incorporating a single nitrogen atom is a promising scaffold hopping approach to enhance chemical diversity in drug discovery libraries. We harness the distinct reactivity of sulfenylnitrenes, which insert a single nitrogen atom to transform readily available pyrroles, indoles, and imidazoles into synthetically challenging pyrimidines, quinazolines, and triazines, respectively. Our additive-free method for skeletal editing employs easily accessible, benchtop-stable sulfenylnitrene precursors over a broad temperature range (-30 to 150°C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!