Bats perceive the three-dimensional environment by emitting ultrasound pulses from their nose or mouth and receiving echoes through both ears. To determine the position of a target object, it is necessary to know the distance and direction of the target. Certain bat species that use a combined signal of long constant frequency and short frequency modulated ultrasounds synchronize their pinnae movement with pulse emission, and this behavior has been regarded as helpful for localizing the elevation angle of a reflective sound source. However, the significance of bats' ear motions remains unclear. In this study, we construct a model of an active listening system including the motion of the ears, and conduct mathematical investigations to clarify the importance of ear motion in direction detection of the reflective sound source. In the simulations, direction detection under rigid ear movements with interaural level differences was mathematically investigated by assuming that bats accomplish direction detection using the amplitude modulation in the echoes caused by ear movements. In particular, the ear motion conditions required for direction detection are theoretically investigated through exhaustive simulations of the pseudo-motion of the ears, rather than simulations of the actual ear motions of bats. The theory suggests that only certain ear motions, namely three-axis rotation, allow for accurate and robust direction detection. Our theoretical analysis also strongly supports the behavior whereby bats move their pinnae in the antiphase mode. In addition, we suggest that simple shaped hearing directionality and well-selected uncomplicated ear motions are sufficient to achieve precise and robust direction detection. Our findings and mathematical approach have the potential to be used in the design of active sensing systems in various engineering fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581360 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1009784 | DOI Listing |
PLoS One
January 2025
Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa.
Objective: To explore the interventions for change in oral health behaviour that are effective in improving oral health behaviours in 8 to 18-year-old children during oral health promotion.
Methods: The Joanna Briggs Institute framework of evidence synthesis for conducting a scoping review was implemented for the methodology. Included studies related to the objective, measured clinical or non-clinical outcomes, were in English, 2011-2023, and were experimental, observational or reviews.
PLoS Pathog
January 2025
Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.
View Article and Find Full Text PDFChaos
January 2025
Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
Detecting directional couplings from time series is crucial in understanding complex dynamical systems. Various approaches based on reconstructed state-spaces have been developed for this purpose, including a cross-distance vector measure, which we introduced in our recent work. Here, we devise two new cross-vector measures that utilize ranks and time series estimates instead of distances.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.
View Article and Find Full Text PDFVis Comput Ind Biomed Art
January 2025
School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
Fluorescence endoscopy technology utilizes a light source of a specific wavelength to excite the fluorescence signals of biological tissues. This capability is extremely valuable for the early detection and precise diagnosis of pathological changes. Identifying a suitable experimental approach and metric for objectively and quantitatively assessing the imaging quality of fluorescence endoscopy is imperative to enhance the image evaluation criteria of fluorescence imaging technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!