State-Specific Chemical Dynamics of the Nonvalence Bound State of the Molecular Anions.

Acc Chem Res

Department of Chemistry, KAIST, Daejeon34141, Republic of Korea.

Published: October 2022

AI Article Synopsis

  • Nonvalence bound states (NBS) are loosely connected anionic states where an excess electron weakly interacts with a neutral core, differing from typical valence orbitals that directly impact molecular structure and reactivity.
  • NBS can be categorized into three types (dipole-bound, quadruple-bound, and correlation-bound states) based on how the electron interacts with the neutral particle, and they play significant roles in various chemical contexts, such as atmospheric and biological chemistry.
  • Recent studies utilized advanced spectroscopy techniques to explore NBS dynamics, revealing details like how the autodetachment rate varies based on specific vibrational states and the need for more complex theoretical models for better understanding.

Article Abstract

Nonvalence bound states (NBS) are anionic states where the excess electron is extremely loosely bound to the neutral core through long-range potentials. In contrast to the valence orbitals of which the electron occupancy determines the molecular structure, as well as the chemical reactivity, the nonvalence orbital is quite diffuse and located far from the neutral core. The NBS can be classified into the dipole-bound state (DBS), quadruple-bound state (QBS), or correlation-bound state (CBS) according to the nature of the electron-neutral interaction, although their interaction potentials may cooperatively contribute. The NBS is ubiquitous in nature and has the strong implications in atmospheric, interstellar, or biological chemistry. Accordingly, NBS has long been conceived to play the role of the doorway into the formation of a stable anion or dissociative electron attachment (DEA). Despite intensive and extensive studies, however, the quantum-mechanical nature of NBS is still far from being thorough understanding. Herein, we describe a new aspect of state-specific NBS-mediated chemical dynamics, which has been revealed through a series of recent studies by our group. We have employed picosecond time-resolved pump-probe spectroscopy combined with cryogenically cooled ion trap and velocity-map imaging techniques to study closed-shell anions generated by electrospray ionization. DBS vibrational Feshbach resonances are prepared by the optical excitation of phenoxide, for instance, and their individual lifetimes have been precisely measured in a state-specific manner to reveal the strong mode-dependency of the autodetachment rate. Fermi's golden rule turns out to be extremely useful for a rational explanation of the experiment, although the more sophisticated theoretical model is desirable for the more quantitative analysis. For the DBS of -chlorophenoxide or -bromophenoxide where the polarizability of neutral core is substantial, the Fermi's golden rule based on the charge-dipole potential needs to be significantly modified to include the correlation effects to explain the exceptionally slow autodetachment rates. For the QBS of 4-cyanophenoxide, the mode-specific behavior of the quadrupole ellipsoid tensor explains the strong mode-dependent autodetachment rate. Meanwhile, the nonadiabatic transition of the excess electron into the valence orbital can result in stable anion formation or immediate chemical bond rupture. In the DBS of -, -, or -iodophenoxide, the transformation of the loosely bound excess electron into the πσ* antibonding orbital occurs to give I as a final fragment. The fragmentation mediated by DBS occurs competitively with the concomitant autodetachment, paving a new way of the reaction control by tuning the quantum-mechanical nature of the DBS Feshbach resonance. This experimental observation provides the foremost evidence for the dynamic role of the DBS as a doorway into anion chemistry, such as DEA. The ponderomotive force on the electron in the nonvalence orbital has been demonstrated for the first time in a strong optical field, giving great promise for the manipulation of polyatomic molecules in terms of the spatial location, as well as the AC-Stark control of the chemical reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.2c00512DOI Listing

Publication Analysis

Top Keywords

excess electron
12
neutral core
12
chemical dynamics
8
nonvalence bound
8
loosely bound
8
nonvalence orbital
8
stable anion
8
quantum-mechanical nature
8
autodetachment rate
8
fermi's golden
8

Similar Publications

A cationic N-heterocyclic phosphenium (NHP) iron tetracarbonyl complex was synthesised from the free cation and its behaviour towards various anionic reactants studied. Reactions with fluoride, chloride, and hydride sources proceeded under attachment of the anion at phosphorus to yield Fe(CO)-complexes of neutral diazaphospholenes, while bromide and iodide reacted under addition of the anion at the metal and decarbonylation to yield NHP iron halides. Reactions with amides and organometallics were unselective.

View Article and Find Full Text PDF

The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.

View Article and Find Full Text PDF

A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom : ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO transporter (PtSCL4-2). Here, we individually overexpressed these genes in to investigate their respective roles in resisting acidic stress (pH 5.

View Article and Find Full Text PDF

Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

January 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China. Electronic address:

Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue.

View Article and Find Full Text PDF

Phosphine (PH) fumigation is widely used to control insect pests in stored products globally. However, intensive PH use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!